

A Division of Powers Holdings, I nc.

Curtis Industries is recognized as a leader in RFI Power Line Filters. We focus on five key areas to insure high quality filters and total customer satisfaction using the latest technology. These key areas include Customer Satisfaction, Design Engineering, Manufacturing, Quality, and On-Time Delivery.

Customer Satisfaction is carried out throughout Curtis. Customer interface with our friendly and knowledgeable Customer Service Representative where all the information needed for order entry, processing, shipping, pricing, and order expediting are immediately available electronically.

Design Engineering is able to create new designs to solve our OEM customer's requirements. Using the Solid Works modeling technology enables our engineers to design the optimum filter or custom control package.

Quality is designed, built in and verified on every filter to the following.

- Hi Pot - DC Line to Line
- Hi Pot - AC Line to Ground
- Current Leakage
- Ground Continuity
- Capacitance Line to Line
- Capacitance Line to Ground
- Inductance Line
- Inductance Ground
- Cross Wiring

Manufacturing uses proprietary techniques with semi and full automation to build in quality and reduce thru-put. We deliver 99.9\% reliable product to meet our customer's quality objectives.

On-Time Delivery is a focus for everyone at Curtis which has resulted in an on-time delivery greater than 98\% on time.

Contents

Selection Guide 2
SINGLE PHASE FILTERS
General Purpose
F1100/F1150 4
F1200/F1250 6
F1300/F1350 8
F1900 11
High Performance
F1400 12
F1500 14
F1600 16
F1700/F1760/1770/1780 18
F2800 22
Wide Band
F5100 24
F5200 26
F5500 28
F5600 30
F5700 32
F5900 34
Single Phase Filter Cutouts 36
POWER ENTRY MODULES
General Purpose Filtered Modules
F2100/2200 40
F2300 42
F2400/2500 44
F2600 46
F2700 48
F3000 50
F3300 52
Combination
PE7/PM7 54
PE8/PM8 56
PE9/PM9 58
PE1/PM1 60
Power Entry Module Cutouts 62
THREE-PHASE FILTERS
F3480/F3600 64
DC FILTERS
General Purpose
FD00 71
FD02 72
High Performance
FD1 73
FD2 74
FD3 74
TECHNICAL CONSIDERATIONS
Understanding Terminology 76
Technical Considerations 78
Conducted Emissions Testing 80
Custom Filter Capabilities 81

Filter Selection Guide

SINGLE PHASE FILTERS]

General Performance

High Performance Wide Band

Specifications:

Rated Voltage: 250VAC Maximum - $50 / 60 \mathrm{~Hz}$ Rated Current: 115VAC 250VAC

$1 A$	$1 A$
$3 A$	$2.5 A$
$6 A$	$4 A$
$10 A$	$6 A$
$20 A$	$10 A$

Current Overload: 6X for 8 seconds
Hi-Pot Test (1 min): F1100 Series

$$
\begin{array}{ll}
\text { Line to Ground: } & \text { 1500VAC } \\
\text { Line to Line: } & \\
1768 V D C
\end{array}
$$

Insulation Resistance: $9 \times 10^{9} \Omega$ at 100 VDC
Ambient Temperature: $40^{\circ} \mathrm{C}$ Max. at rated current Humidity Range: 0% to 95% R.H.
Termination:
A: QC - Quick Connect B: Wire

Maximum Leakage Current:

Each Line to Ground	F1100	F1150
115VAC, 60Hz:	0.40 mA	0.25 mA
250VAC, $50 \mathrm{~Hz}:$.75 mA	0.40 mA

Agency Approvals:

Nominal Current Rating	Part Number	Termination Line/Load	MINIMUM INSERTION LOSS - dB (50 ohm Circuit)						
			MODE	Frequency - MHz					
				. 15	. 50	1.0	5.0	10	30
1 A	$\begin{aligned} & \hline \text { F1100AA01 } \\ & \text { F1100BB01 } \end{aligned}$	QC/QC Wire/Wire	Common Differential	20	35	43	$\begin{aligned} & 52 \\ & 55 \end{aligned}$	$\begin{aligned} & 55 \\ & 65 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$
	$\begin{aligned} & \text { F1150AA01 } \\ & \text { F1150BB01 } \end{aligned}$	QC/QC Wire/Wire	Common Differential	20	30	37	$\begin{aligned} & 50 \\ & 55 \end{aligned}$	$\begin{aligned} & 50 \\ & 65 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$
3 A	F1100AA03 F1100BB03 F1100PP03	QC/QC Wire/Wire PC/PC	Common Differential	20	35	43	$\begin{aligned} & 52 \\ & 55 \end{aligned}$	$\begin{aligned} & 55 \\ & 64 \end{aligned}$	$\begin{aligned} & 50 \\ & 46 \end{aligned}$
	$\begin{aligned} & \text { F1150AA03 } \\ & \text { F1150BB03 } \end{aligned}$	QC/QC Wire/Wire	Common Differential	20	30	37	$\begin{aligned} & 50 \\ & 55 \end{aligned}$	$\begin{aligned} & 50 \\ & 64 \end{aligned}$	$\begin{aligned} & 50 \\ & 46 \end{aligned}$
6 A	$\begin{aligned} & \hline \text { F1100AA06 } \\ & \text { F1100BB06 } \end{aligned}$	QC/QC Wire/Wire	Common Differential	10	$\begin{array}{r} 22 \\ 2 \end{array}$	$\begin{array}{r} 30 \\ 5 \end{array}$	$\begin{aligned} & 46 \\ & 51 \end{aligned}$	$\begin{aligned} & 50 \\ & 57 \end{aligned}$	$\begin{aligned} & 45 \\ & 49 \end{aligned}$
	F1150AA06 F1150BB06	QC/QC Wire/Wire	Common Differential	10	$\begin{array}{r} 20 \\ 2 \end{array}$	27 5	$\begin{aligned} & \hline 45 \\ & 51 \end{aligned}$	$\begin{aligned} & 45 \\ & 57 \end{aligned}$	$\begin{aligned} & 45 \\ & 49 \end{aligned}$
10A	$\begin{aligned} & \hline \text { F1100AA10 } \\ & \text { F1100BB10 } \end{aligned}$	QC/QC Wire/Wire	Common Differential	10	22	$\begin{array}{r} 30 \\ 2 \end{array}$	$\begin{aligned} & 46 \\ & 27 \end{aligned}$	$\begin{aligned} & 50 \\ & 47 \end{aligned}$	$\begin{aligned} & 45 \\ & 50 \end{aligned}$
	$\begin{aligned} & \text { F1150AA10 } \\ & \text { F1150BB10 } \end{aligned}$	QC/QC Wire/Wire	Common Differential	10	20	$\begin{array}{r} 27 \\ 2 \end{array}$	$\begin{aligned} & 45 \\ & 27 \end{aligned}$	$\begin{aligned} & 45 \\ & 47 \end{aligned}$	$\begin{aligned} & 45 \\ & 50 \end{aligned}$
20A	F1100AA20 F1100DD20	QC/QC Screw/Screw	Common Differential	8	18	$\begin{array}{r} 22 \\ 5 \end{array}$	$\begin{aligned} & 36 \\ & 22 \end{aligned}$	$\begin{aligned} & 42 \\ & 46 \end{aligned}$	$\begin{aligned} & 45 \\ & 60 \end{aligned}$
	$\begin{aligned} & \text { F1150AA20 } \\ & \text { F1150DD20 } \end{aligned}$	QC/QC Screw/Screw	Common Differential	8	15	20 5	$\begin{aligned} & 32 \\ & 22 \end{aligned}$	$\begin{aligned} & 38 \\ & 46 \end{aligned}$	$\begin{aligned} & 45 \\ & 60 \end{aligned}$

NOTE: Other combinations of terminals may be specified on special order.

F1100AA/F1150AA (1, 3, 6, 10 and 20Amp) Dimensions

Amps	A	B	C	D	E	F
1 A	2.500	1.750	.625	2.125	.875	.550
	$(63,5)$	$(44,5)$	$(15,8)$	$(53,9)$	$(22,2)$	$(14,0)$
3 A	2.500	1.750	.750	2.125	1.250	.550
	$(63,5)$	$(44,5)$	$(19,1)$	$(53,9)$	$(31,8)$	$(14,0)$
6 A	2.500	1.750	.750	2.125	1.250	.550
	$(63,5)$	$(44,5)$	$(19,1)$	$(53,9)$	$(31,8)$	$(14,0)$
10A	2.500	1.750	1.125	2.125	1.250	.550
	$(63,5)$	$(44,5)$	$(28,5)$	$(53,9)$	$(31,8)$	$(14,0)$
20 A	2.760	2.000	1.125	2.375	2.000	.550
	$(70,6)$	$(60,8)$	$(28,5)$	$(60,3)$	$(50,8)$	$(14,0)$

F1100DD/F1150DD

(20Amp Only) Dimensions

F1100PP Recommended PC Mounting

F1100BB/FB1150BB

(1, 3, 6 and 10Amp) Dimensions

Amps	A	B	C	D	E
1A	2.500	1.750	.625	2.125	.875
	$(63,5)$	$(44,5)$	$(15,8)$	$(53,9)$	$(22,2)$
3 A	2.500	1.750	.750	2.125	1.250
	$(63,5)$	$(44,5)$	$(19,1)$	$(53,9)$	$(31,8)$
6 A	2.500	1.750	.750	2.125	1.250
	$(63,5)$	$(44,5)$	$(19,1)$	$(53,9)$	$(31,8)$
10 A	2.500	1.750	1.125	2.125	1.250
	$(63,5)$	$(44,5)$	$(28,5)$	$(53,9)$	$(31,8)$

1-800-657-0853

Features:

- Designed for General Purpose Common Mode and Differential Mode Applications
- Higher Line-to-Line Capacitance for

Protection from Pulsed,
Intermittent, or Continuous RFI

- Available in Standard (F1200) and LowLeakage (F1250) (F1260) (F1270) (F1280) (F1290) Models
- Available with Integral IEC Connector up to 10Amps

F1200/F1250 Simplified Schematic

Specifications:

Rated Voltage: 250VAC Maximum - $50 / 60 \mathrm{~Hz}$
Rated Current:

115VAC	1 A	3 A	6 A	10 A	20 A	30 A
250VAC	1 A	2.5 A	4 A	6 A	10 A	15 A

Current Overload: 6X for 8 seconds
Hi-Pot Test (1 min): F1200 Series
Line to Ground:
1500VAC
Line to Line:
1768VDC

Insulation Resistance: $9 \times 10^{9} \Omega$ at 100 VDC
Ambient Temperature: $40^{\circ} \mathrm{C}$ Max at rated current
Humidity Range: 0\% to 95\% R.H.
Termination:
A: QC - Quick Connect
C: IEC Receptacle
B: Wire
D: Screw

Maximum Leakage Current:

Each Line to Ground	F1200	F1250	F1260	F1270	F1280	F1290
$115 \mathrm{VAC}, 60 \mathrm{~Hz}:$	0.40 mA	0.25 mA	.15 mA	.002 mA	.015 mA	.030 mA
$250 \mathrm{VAC}, 50 \mathrm{~Hz}:$.75 mA	.40 mA	.25 mA	.005 mA	.025 mA	.050 mA

Agency Approvals:

Nominal Current Rating	Part Number	Termination Line/Load	MINIMUM INSERTION LOSS - dB (50 ohm Circuit)						
			MODE	Frequency - MHz					
				. 15	. 50	1.0	5.0	10	30
1 A	$\begin{aligned} & \text { F1200AA01 } \\ & \text { F1200BB01 } \end{aligned}$	QC/QC Wire/Wire	Common Differential	$\begin{array}{r} 20 \\ 4 \end{array}$	$\begin{aligned} & 35 \\ & 38 \end{aligned}$	$\begin{aligned} & 43 \\ & 59 \end{aligned}$	$\begin{aligned} & 52 \\ & 66 \end{aligned}$	$\begin{aligned} & 55 \\ & 62 \end{aligned}$	$\begin{aligned} & 50 \\ & 54 \end{aligned}$
	$\begin{aligned} & \text { F1250AA01 } \\ & \text { F1250BB01 } \end{aligned}$	QC/QC Wire/Wire	Common Differential	$\begin{array}{r} 20 \\ 4 \end{array}$	$\begin{aligned} & 30 \\ & 38 \end{aligned}$	$\begin{aligned} & 37 \\ & 59 \end{aligned}$	$\begin{aligned} & 50 \\ & 66 \end{aligned}$	$\begin{aligned} & 50 \\ & 62 \end{aligned}$	$\begin{aligned} & 50 \\ & 54 \end{aligned}$
3 A	F1200AA03 F1200BB03 F1200CA03	QC/QC Wire/Wire IEC/QC	Common Differential	$\begin{array}{r} 20 \\ 4 \end{array}$	$\begin{aligned} & 35 \\ & 38 \end{aligned}$	$\begin{aligned} & 43 \\ & 59 \end{aligned}$	$\begin{aligned} & 52 \\ & 70 \end{aligned}$	$\begin{aligned} & 55 \\ & 64 \end{aligned}$	$\begin{aligned} & 50 \\ & 59 \end{aligned}$
	F1250AA03 F1250BB03 F1250CA03	QC/QC Wire/Wire IEC/QC	Common Differential	$\begin{array}{r} 20 \\ 4 \end{array}$	$\begin{aligned} & 30 \\ & 38 \end{aligned}$	$\begin{aligned} & 37 \\ & 59 \end{aligned}$	$\begin{aligned} & 50 \\ & 70 \end{aligned}$	$\begin{aligned} & 50 \\ & 64 \end{aligned}$	$\begin{aligned} & 50 \\ & 59 \end{aligned}$
6 A	F1200AA06 F1200BB06 F1200CA06	QC/QC Wire/Wire IEC/QC	Common Differential	$\begin{array}{r} 10 \\ 9 \end{array}$	$\begin{aligned} & 22 \\ & 25 \end{aligned}$	$\begin{aligned} & 30 \\ & 48 \end{aligned}$	$\begin{aligned} & 46 \\ & 70 \end{aligned}$	$\begin{aligned} & 50 \\ & 70 \end{aligned}$	$\begin{aligned} & 45 \\ & 62 \end{aligned}$
	F1250AA06 F1250BB06 F1250CA06	QC/QC Wire/Wire IEC/QC	Common Differential	$\begin{array}{r} 10 \\ 9 \end{array}$	$\begin{aligned} & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & 27 \\ & 48 \end{aligned}$	$\begin{aligned} & 45 \\ & 70 \end{aligned}$	$\begin{aligned} & 45 \\ & 70 \end{aligned}$	$\begin{aligned} & 45 \\ & 62 \end{aligned}$
10A	$\begin{aligned} & \hline \text { F1200AA10 } \\ & \text { F1200BB10 } \\ & \text { F1200CA10 } \end{aligned}$	QC/QC Wire/Wire IEC/QC	Common Differential	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 22 \\ & 16 \end{aligned}$	$\begin{aligned} & 30 \\ & 43 \end{aligned}$	$\begin{aligned} & 46 \\ & 70 \end{aligned}$	$\begin{aligned} & 50 \\ & 70 \end{aligned}$	$\begin{aligned} & 45 \\ & 66 \end{aligned}$
	F1250AA10 F1250BB10 F1250CA10	QC/QC Wire/Wire IEC/QC	Common Differential	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 20 \\ & 16 \end{aligned}$	$\begin{aligned} & 27 \\ & 43 \end{aligned}$	$\begin{aligned} & 45 \\ & 70 \end{aligned}$	$\begin{aligned} & 45 \\ & 70 \end{aligned}$	$\begin{aligned} & 45 \\ & 66 \end{aligned}$
20A	$\begin{aligned} & \text { F1200AA20 } \\ & \text { F1200DD20 } \end{aligned}$	QC/QC Screw/Screw	Common Differential	$\begin{array}{r} 10 \\ 9 \end{array}$	$\begin{aligned} & 22 \\ & 19 \end{aligned}$	$\begin{aligned} & 30 \\ & 44 \end{aligned}$	$\begin{aligned} & 42 \\ & 70 \end{aligned}$	$\begin{aligned} & 47 \\ & 70 \end{aligned}$	$\begin{aligned} & 40 \\ & 70 \end{aligned}$
	$\begin{aligned} & \text { F1250AA20 } \\ & \text { F1250DD20 } \end{aligned}$	QC/QC Screw/Screw	Common Differential	$\begin{array}{r} 10 \\ 9 \end{array}$	$\begin{aligned} & 20 \\ & 19 \end{aligned}$	$\begin{aligned} & 25 \\ & 44 \end{aligned}$	$\begin{aligned} & 38 \\ & 70 \end{aligned}$	$\begin{aligned} & 40 \\ & 70 \end{aligned}$	$\begin{aligned} & 40 \\ & 70 \end{aligned}$
30A	F1200DD30	Screw/Screw	Common Differential	$\begin{array}{r} 7 \\ 11 \end{array}$	$\begin{aligned} & 15 \\ & 13 \end{aligned}$	$\begin{aligned} & 20 \\ & 44 \end{aligned}$	$\begin{aligned} & 34 \\ & 70 \end{aligned}$	$\begin{aligned} & 42 \\ & 60 \end{aligned}$	$\begin{aligned} & 40 \\ & 57 \end{aligned}$

NOTE: Other combinations of terminals may be specified on special order.

F1200AA/F1250AA (1, 3, 6, 10 and 20Amp) Dimensions

F1200BB/FB1250BB (1, 3, 6 and 10Amp) Dimensions

Amps	A	B	C	D	E
1A	2.750	2.00	.875	2.375	1.750
	$(69,9)$	$(50,8)$	$(22,2)$	$(60,3)$	$(44,5)$
3 A	2.750	2.00	1.125	2.375	1.750
	$(69,9)$	$(50,8)$	$(28,5)$	$(60,3)$	$(44,5)$
6 A	2.750	2.00	1.125	2.375	1.750
	$(69,9)$	$(50,8)$	$(28,5)$	$(60,3)$	$(44,5)$
10 A	2.750	2.00	1.125	2.375	2.000
	$(69,9)$	$(50,8)$	$(28,5)$	$(60,3)$	$(50,8)$

F1200CA/F1250CA (3, 6, and 10Amp) Dimensions

				Amps	A	B	C	D	E
				3A	$\begin{aligned} & 2.000 \\ & (50,8) \end{aligned}$	$\begin{aligned} & 2.000 \\ & (50,8) \end{aligned}$	$\begin{gathered} 1.50 \\ (38,1) \end{gathered}$	$\begin{gathered} .550 \\ (14,0) \end{gathered}$	$\begin{gathered} .565 \\ (14,44) \end{gathered}$
	D -		Refer to Page	6A	$\begin{aligned} & 2.500 \\ & (63,5) \end{aligned}$	$\begin{aligned} & \hline 2.000 \\ & (50,8) \end{aligned}$	$\begin{aligned} & 1.500 \\ & (38,1) \\ & \hline \end{aligned}$	$\begin{gathered} .550 \\ (14,0) \\ \hline \end{gathered}$	$\begin{gathered} .750 \\ (19,1) \\ \hline \end{gathered}$
			36 for Standard Mounting Cutouts	10A	$\begin{aligned} & 2.500 \\ & (63,5) \end{aligned}$	$\begin{aligned} & 2.000 \\ & (50,8) \end{aligned}$	$\begin{aligned} & 1.500 \\ & (38,1) \\ & \hline \end{aligned}$	$\begin{gathered} .550 \\ (14,0) \end{gathered}$	$\begin{gathered} .750 \\ (19,1) \end{gathered}$

F1200DD/F1250DD

(20Amp Only) Dimensions

F1200DD30

(30Amp Only) Dimensions

Specifications:

Rated Voltage: 250VAC Maximum $-50 / 60 \mathrm{~Hz}$
Rated Current:

115VAC	1 A	3 A	6 A	10 A	15 A	20 A
250VAC	1 A	2.5 A	4 A	6 A	15 A	16 A

Current Overload: 6X for 8 seconds
Hi-Pot Test (1 min): F1300/F1350

$$
\begin{array}{ll}
\text { Line to Ground: } & \text { 1500VAC } \\
\text { Line to Line: } & 1768 \text { VDC }
\end{array}
$$

Insulation Resistance: $9 \times 10^{9} \Omega$ at 100VDC
Ambient Temperature: $40^{\circ} \mathrm{C}$ Max. at rated current
Humidity Range: 0% to 95% R.H.
Termination:
A: QC - Quick Connect
C: IEC Receptacle
B : Wire
P: PC - P.C. Board

Maximum Leakage Current:

Each Line to Ground	F1300	F1350	F1360	F1370	F1380	F1390
115VAC, $60 \mathrm{~Hz}:$	0.4 mA	0.25 mA	.15 mA	.002 mA	.015 mA	.030 mA
250VAC, $50 \mathrm{~Hz}:$.75 mA	.40 mA	.25 mA	.005 mA	.025 mA	.050 mA

Agency Approvals:

Except 15Amp

Nominal Current Rating	Part Number	Termination Line/Load	MINIMUM INSERTION LOSS - dB (50 ohm Circuit)						
			MODE	Frequency - MHz					
				. 15	. 50	1.0	5.0	10	30
1A	$\begin{aligned} & \text { F1300AA01 } \\ & \text { F1300BB01 } \end{aligned}$	QC/QC Wire/Wire	Common Differential	$\begin{array}{r} 40 \\ 2 \end{array}$	$\begin{aligned} & 65 \\ & 57 \end{aligned}$	$\begin{aligned} & 65 \\ & 69 \end{aligned}$	$\begin{aligned} & 65 \\ & 70 \end{aligned}$	$\begin{aligned} & 65 \\ & 70 \end{aligned}$	$\begin{aligned} & 65 \\ & 60 \end{aligned}$
	$\begin{aligned} & \text { F1350AA01 } \\ & \text { F1350BB01 } \end{aligned}$	QC/QC Wire/Wire	Common Differential	$\begin{array}{r} 30 \\ 2 \end{array}$	$\begin{aligned} & 60 \\ & 57 \end{aligned}$	$\begin{aligned} & \hline 65 \\ & 69 \end{aligned}$	$\begin{aligned} & 65 \\ & 70 \end{aligned}$	$\begin{aligned} & 65 \\ & 70 \end{aligned}$	$\begin{aligned} & 65 \\ & 60 \end{aligned}$
3 A	F1300AA03 F1300BB03 F1300CA03 F1300CP03	QC/QC Wire/Wire IEC/QC IEC/PC	Common Differential	$\begin{array}{r} 40 \\ 7 \end{array}$	$\begin{aligned} & 65 \\ & 64 \end{aligned}$	$\begin{aligned} & 65 \\ & 70 \end{aligned}$	$\begin{aligned} & 65 \\ & 70 \end{aligned}$	$\begin{aligned} & 65 \\ & 70 \end{aligned}$	$\begin{aligned} & 65 \\ & 58 \end{aligned}$
	F1350AA03 F1350BB03 F1350CA03 F1350CP03	QC/QC Wire/Wire IEC/QC IEC/PC	Common Differential	$\begin{array}{r} 30 \\ 7 \end{array}$	$\begin{aligned} & 60 \\ & 64 \end{aligned}$	$\begin{aligned} & 65 \\ & 70 \end{aligned}$	$\begin{aligned} & 65 \\ & 70 \end{aligned}$	$\begin{aligned} & 65 \\ & 70 \end{aligned}$	$\begin{aligned} & 65 \\ & 58 \end{aligned}$
$6 A$	F1300AA06 F1300BB06 F1300CA06	QC/QC Wire/Wire IEC/QC	Common Differential	$\begin{aligned} & 12 \\ & 10 \end{aligned}$	$\begin{aligned} & 48 \\ & 40 \end{aligned}$	$\begin{aligned} & 60 \\ & 70 \end{aligned}$	$\begin{aligned} & 65 \\ & 70 \end{aligned}$	$\begin{aligned} & 65 \\ & 70 \end{aligned}$	$\begin{aligned} & 65 \\ & 60 \end{aligned}$
	F1350AA06 F1350BB06 F1350CA06	QC/QC Wire/Wire IEC/QC	Common Differential	$\begin{array}{r} 2 \\ 10 \end{array}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 60 \\ & 70 \end{aligned}$	$\begin{aligned} & 65 \\ & 70 \end{aligned}$	$\begin{aligned} & 65 \\ & 70 \end{aligned}$	$\begin{aligned} & 65 \\ & 60 \end{aligned}$
10A	$\begin{aligned} & \text { F1300AA10 } \\ & \text { F1300BB10 } \\ & \text { F1300CA10 } \end{aligned}$	QC/QC Wire/Wire IEC/QC	Common Differential	$\begin{aligned} & 12 \\ & 13 \end{aligned}$	$\begin{aligned} & 48 \\ & 13 \end{aligned}$	$\begin{aligned} & 60 \\ & 64 \end{aligned}$	$\begin{aligned} & 65 \\ & 70 \end{aligned}$	$\begin{aligned} & 65 \\ & 67 \end{aligned}$	65 56
	$\begin{aligned} & \text { F1350AA10 } \\ & \text { F1350BB10 } \end{aligned}$	QC/QC Wire/Wire	Common Differential	$\begin{array}{r} 2 \\ 13 \end{array}$	$\begin{aligned} & 40 \\ & 13 \end{aligned}$	$\begin{aligned} & 60 \\ & 64 \end{aligned}$	$\begin{aligned} & 65 \\ & 70 \end{aligned}$	$\begin{aligned} & 65 \\ & 67 \end{aligned}$	$\begin{aligned} & 65 \\ & 56 \end{aligned}$
15A	F1300AA15	QC/QC	Common Differential	$\begin{aligned} & 14 \\ & 15 \end{aligned}$	$\begin{aligned} & 35 \\ & 10 \end{aligned}$	$\begin{aligned} & 44 \\ & 45 \end{aligned}$	$\begin{aligned} & 56 \\ & 70 \end{aligned}$	$\begin{aligned} & 58 \\ & 67 \end{aligned}$	$\begin{aligned} & \hline 55 \\ & 56 \end{aligned}$
20A	F1300AA20	QC/QC	Common Differential	-	44 -	$\begin{aligned} & 60 \\ & 35 \\ & \hline \end{aligned}$	$\begin{aligned} & 65 \\ & 60 \\ & \hline \end{aligned}$	$\begin{aligned} & 65 \\ & 57 \end{aligned}$	$\begin{aligned} & 60 \\ & 45 \end{aligned}$
	F1350AA20	QC/QC	Common Differential	$\underline{2}$	35	$\begin{aligned} & 61 \\ & 35 \end{aligned}$	$\begin{aligned} & 63 \\ & 60 \end{aligned}$	$\begin{aligned} & 60 \\ & 57 \end{aligned}$	50 45

NOTE: Other combinations of terminals may be specified on special order.

F1300/F1350 Simplified Schematic

F1300AA (1, 3, 6, 10 and 15Amp) F1350AA (1, 3, 6 and 10Amp) Dimensions

F1300BB/F1350BB

(1, 3, 6 and 10Amp) Dimensions

F1300CA (3, 6 and 10Amp)
F1350CA (3 and 6Amp) Dimensions
Refer to Page 36
for Standard
Mounting Cutouts

Amps	A	B	C	D	E
3 A	2.500	2.000	1.500	.550	.565
	$(63,6)$	$(50,8)$	$(38,1)$	$(14,0)$	$(14,3)$
6 A	2.500	2.000	1.500	.550	.565
	$(63,5)$	$(50,8)$	$(38,1)$	$(14,0)$	$(14,3)$
10 A	2.880	2.120	1.500	.65	.565
	$(73,1)$	$(53,8)$	$(38,1)$	$(16,0)$	$(14,3)$

F1300AA/F1350AA (20Amp Only) Dimensions

Specifications:

Features:

- Designed for Equipment Requiring UL1410 Approval (Consumer Electronics)
- Utilizes UL1414 Approved Components
- Greater Differential Mode Protection

F1900 Simplified Schematic

F1900AA

(3 and 6Amp) Dimensions

Insulation Resistance: $9 \times 10^{9} \Omega$ at 100VDC
Ambient Temperature: $40^{\circ} \mathrm{C}$ Max. at rated urrent Humidity Range: 0\% to 95% R.H.
Termination:
A: QC - Quick Connect
Maximum Leakage Current:
$\begin{array}{lr}\text { Each Line to Ground } & \text { F1900 } \\ \text { 115VAC, } 60 \mathrm{~Hz}: & 0.25 \mathrm{~mA}\end{array}$
Agency Approvals:

Nominal Current Rating	Part Number	Termination Line/Load	MINIMUM INSERTION LOSS - dB (50 ohm Circuit)						
			MODE	Frequency - MHz					
				. 15	. 50	1.0	5.0	10	30
3 A	F1900AA03	QC/QC	Common Differential	$\begin{array}{r} 20 \\ 7 \end{array}$	$\begin{aligned} & 30 \\ & 19 \end{aligned}$	$\begin{aligned} & 37 \\ & 28 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 50 \\ & 57 \end{aligned}$	$\begin{aligned} & 50 \\ & 70 \end{aligned}$
6 A	F1900AA06	QC/QC	Common Differential	10 8	$\begin{aligned} & 20 \\ & 18 \end{aligned}$	$\begin{aligned} & 27 \\ & 24 \end{aligned}$	45 45	$\begin{aligned} & 45 \\ & 52 \end{aligned}$	$\begin{aligned} & 45 \\ & 64 \end{aligned}$

NOTE: Other combinations of terminals may be specified on special order.

Features:

- High Peak Current Design - High Insertion Loss for Switching Power Supply Emissions
- Low-Leakage Current
- Compact Case Sizes in 6 and 10Amp Models
- Available with Integral IEC Connector in 3 and 6Amp Models

F1400 Simplified Schematic

Specifications:

Rated Voltage: 250VAC Maximum - 50/60 Hz
Rated Current: 115VAC 250VAC

$3 A$	$1.5 A$
$6 A$	$4 A$
$10 A$	$6 A$

Current Overload: 6X for 8 seconds
Hi-Pot Test (1 min):

$$
\begin{array}{ll}
\text { Line to Ground } & 1500 \text { VAC } \\
\text { Line to Line } & 1768 \text { VDC }
\end{array}
$$

Insulation Resistance: $9 \times 10^{9} \Omega$ at 100VDC
Ambient Temperature: $40^{\circ} \mathrm{C}$ Max. at rated current Humidity Range: 0% to 95% R.H.
Termination:
A: QC - Quick Connect
B: Wire
C: IEC Receptacle
Maximum Leakage Current:

Each Line to Ground	F1400
115VAC, 60Hz:	0.25 mA
250VAC, $50 \mathrm{~Hz}:$	0.40 mA

Agency Approvals:
메잉

Nominal Current Rating	Part Number	Termination Line/Load	MINIMUM INSERTION LOSS - dB (50 ohm Circuit)						
			MODE	Frequency - MHz					
				. 15	. 50	1.0	5.0	10	30
3 A	$\begin{aligned} & \text { F1400AA03 } \\ & \text { F1400BB03 } \\ & \text { F1400CA03 } \end{aligned}$	QC/QC Wire/Wire IEC/QC	Common Differential	$\begin{aligned} & 58 \\ & 40 \end{aligned}$	65 60	$\begin{aligned} & 65 \\ & 65 \end{aligned}$	65 65	$\begin{aligned} & 60 \\ & 65 \end{aligned}$	$\begin{aligned} & 44 \\ & 60 \end{aligned}$
6 A	F1400AA06 F1400BB06 F1400CA06	QC/QC Wire/Wire IEC/QC	Common Differential	$\begin{aligned} & 58 \\ & 36 \end{aligned}$	65 55	$\begin{aligned} & 65 \\ & 60 \end{aligned}$	65 60	$\begin{aligned} & 60 \\ & 55 \end{aligned}$	$\begin{aligned} & 54 \\ & 50 \end{aligned}$
10A	$\begin{aligned} & \text { F1400AA10 } \\ & \text { F1400BB10 } \end{aligned}$	QC/QC Wire/Wire	Common Differential	$\begin{aligned} & 56 \\ & 40 \end{aligned}$	65 50	65 60	65 65	60 65	$\begin{aligned} & 54 \\ & 60 \end{aligned}$

NOTE: Other combinations of terminals may be specified on special order.

F1400AA (3, 6 and 10Amp) Dimensions

		Amps	A	B	C	D	E	F
	Hoo	3A	$\begin{aligned} & 3.310 \\ & (84,1) \end{aligned}$	$\begin{aligned} & 2.000 \\ & (50,8) \end{aligned}$	$\begin{aligned} & 1.500 \\ & (38,2) \end{aligned}$	$\begin{aligned} & 2.940 \\ & (74,7) \end{aligned}$	$\begin{aligned} & 2.500 \\ & (63,5) \end{aligned}$	$\begin{gathered} .550 \\ (14,0) \end{gathered}$
		6A	$\begin{aligned} & 3.310 \\ & (84,1) \\ & \hline \end{aligned}$	$\begin{aligned} & 2.000 \\ & (50,8) \\ & \hline \end{aligned}$	$\begin{aligned} & 1.500 \\ & (38,2) \end{aligned}$	$\begin{aligned} & 2.940 \\ & (74,7) \end{aligned}$	$\begin{aligned} & \hline 2.500 \\ & (63,5) \\ & \hline \end{aligned}$	$\begin{gathered} .550 \\ (14,0) \\ \hline \end{gathered}$
		10A	$\begin{gathered} 4.70 \\ (119,4) \end{gathered}$	$\begin{aligned} & 2.250 \\ & (57,1) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.750 \\ & (44,4) \end{aligned}$	$\begin{gathered} 4.250 \\ (107,9) \end{gathered}$	$\begin{aligned} & \hline 3.750 \\ & (95,3) \end{aligned}$	$\begin{gathered} .550 \\ (14,0) \end{gathered}$

F1400BB (3, 6 and 10Amp) Dimensions

Amps	A	B	C	D	E
3 A	3.310	2.000	1.500	2.940	2.500
	$(84,1)$	$(50,8)$	$(38,1)$	$(74,7)$	$(63,5)$
6 A	3.310	2.000	1.500	2.940	2.500
	$(84,1)$	$(50,8)$	$(38,1)$	$(74,7)$	$(63,5)$
10 A	4.70	2.250	1.750	4.250	3.750
	$(119,4)$	$(57,1)$	$(44,4)$	$(107,9)$	$(95,3)$

F1400CA (3 and 6Amp) Dimensions

Specifications:

Rated Voltage: 250VAC Maximum - $50 / 60 \mathrm{~Hz}$
Rated Current: 115VAC 250VAC

$3 A$	$1.5 A$
$6 A$	$3 A$
$10 A$	$6 A$
$15 A$	$8 A$

Current Overload: 6X for 8 seconds
Hi-Pot Test (1 min):
Line to Ground 1500VAC
Line to Line 1768VDC
Insulation Resistance: $9 \times 10^{9} \Omega$ at 100VDC
Ambient Temperature: $40^{\circ} \mathrm{C}$ Max. at rated current Humidity Range: 0\% to 95% R.H.
Termination:
A: QC - Quick Connect
B: Wire
C: IEC Receptacle
F: IEC Receptacle with Fuse Holder
Maximum Leakage Current:

Each Line to Ground	F1500
115VAC, $60 \mathrm{~Hz}:$	0.25 mA
250VAC, $50 \mathrm{~Hz}:$	0.40 mA

Agency Approvals:

F1500FX Simplified Schematic

Nominal Current Rating	Part Number	Termination Line/Load	MINIMUM INSERTION LOSS - dB (50 ohm Circuit)						
			MODE	Frequency - MHz					
				. 15	. 50	1.0	5.0	10	30
3 A	F1500AA03 F1500CA03 F1500FA03 F1500CB03	```QC/QC IEC/QC Fused IEC/QC QC/Wire```	Common Differential	$\begin{aligned} & 32 \\ & 35 \end{aligned}$	$\begin{aligned} & 43 \\ & 60 \end{aligned}$	$\begin{aligned} & 50 \\ & 65 \end{aligned}$	$\begin{aligned} & 50 \\ & 60 \end{aligned}$	$\begin{aligned} & 50 \\ & 55 \end{aligned}$	$\begin{aligned} & 50 \\ & 40 \end{aligned}$
6 A	F1500AX06 F1500CA06 F1500FA06 F1500CB06	IEC/QC Fused IEC/QC QC/Wire	Common Differential	$\begin{aligned} & 32 \\ & 30 \end{aligned}$	$\begin{aligned} & 42 \\ & 60 \end{aligned}$	$\begin{aligned} & 45 \\ & 65 \end{aligned}$	$\begin{aligned} & 45 \\ & 65 \end{aligned}$	$\begin{aligned} & 45 \\ & 60 \end{aligned}$	$\begin{aligned} & 45 \\ & 50 \end{aligned}$
10A	F1500AA10 F1500CA10 F1500FA10 F1500CB10	$\begin{gathered} \text { QC/QC } \\ \text { IEC/QC } \\ \text { Fused IEC/QC } \end{gathered}$	Common Differential	$\begin{aligned} & 29 \\ & 15 \end{aligned}$	$\begin{aligned} & 36 \\ & 50 \end{aligned}$	$\begin{aligned} & 39 \\ & 65 \end{aligned}$	$\begin{aligned} & 45 \\ & 65 \end{aligned}$	$\begin{aligned} & 45 \\ & 60 \end{aligned}$	$\begin{aligned} & 45 \\ & 50 \end{aligned}$
15A	$\begin{aligned} & \text { F1500CA15 } \\ & \text { F1500CB15 } \end{aligned}$	IEC/QC IEC/Wire	Common Differential	$\begin{aligned} & 26 \\ & 35 \end{aligned}$	$\begin{aligned} & 32 \\ & 60 \end{aligned}$	$\begin{aligned} & 36 \\ & 65 \end{aligned}$	$\begin{aligned} & 44 \\ & 65 \end{aligned}$	46 65	$\begin{aligned} & 52 \\ & 65 \end{aligned}$

[^0]
F1500AA (3 and 10Amp) Dimensions

Refer to Page 36
for Standard
Mounting Cutouts

Amps	A	B	C	D	E
3 A	3.31	2.000	1.13	2.938	2.50
	$(84,1)$	$(50,8)$	$(28,7)$	$(74,6)$	$(63,5)$
10 A	3.31	2.000	1.50	2.938	2.50
	$(84,1)$	$(50,8)$	$(38,1)$	$(74,6)$	$(63,5)$

F1500CA

(3, 6, 10 and 15Amp) Dimensions
F1500CB
(3, 6, 10 and 15Amp) Dimensions
Refer to Page 36 for Standard
Mounting Cutouts

(2) No. 6-32 UNC2B

Amps	A	B	C	D	E
3 A	2.000				
	2.000	1.500 $(50,8)$ $(38,1)$.550 $(14,0)$.565 $(14,3)$	
6 A	2.500	2.000	1.500	.550	.565 $(63,5)$
	$(38,1)$	$(14,0)$	$(14,3)$		
10 A	2.500	2.000	1.500 $(63,5)$.550 $(50,8)$.565 $(38,1)$
	$3.25,0)$ $(82,6)$	2.25 $(57,2)$	1.75 $(44,5)$.550 $(14,0)$.705 $(17,9)$

F1500FA

(3, 6 and 10Amp) Dimensions

Refer to Page 36 for Standard
Mounting Cutouts

(1) $5 \mathrm{~mm} \times 20 \mathrm{~mm}$ Fuse not included)
(2) No. 6-32 UNC2B

Specifications:
Rated Voltage: 250VAC Maximum - $50 / 60 \mathrm{~Hz}$
Rated Current: 115VAC 250VAC
$3 \mathrm{~A} \quad 1.5 \mathrm{~A}$

6A 3A

Features:

- T Section, Dual Coil Design - High Insertion Loss for Switching Power Supply Emissions
- Low-Leakage Current Design
- Space-Efficient with Integral IEC Connector and Compact Case in Current Ratings up to 10Amps
- Available in Fused IEC Connector and PC Mounted Versions

F1600CX Simplified Schematic

F1600FA Simplified Schematic

Current Overload: 6X for 8 seconds
Hi-Pot Test (1 min):

$$
\begin{array}{ll}
\text { Line to Ground } & 1500 \text { VAC } \\
\text { Line to Line } & 1768 \text { VDC }
\end{array}
$$

Insulation Resistance: $9 \times 10^{9} \Omega$ at 100VDC
Ambient Temperature: $40^{\circ} \mathrm{C}$ Max. at rated current
Humidity Range: 0\% to 95\% R.H.
Termination:
A: QC - Quick Connect
B: Wire
C: IEC Receptacle
P: PC - P.C. Board

Maximum Leakage Current:

Each Line to Ground	F1600
115VAC, 60Hz:	0.25 mA
250VAC, $50 \mathrm{~Hz}:$	0.40 mA

Agency Approvals:

Nominal Current Rating	Part Number	Termination Line/Load	MINIMUM INSERTION LOSS - dB (50 ohm Circuit)						
			MODE	Frequency - MHz					
				. 15	. 50	1.0	5.0	10	30
3 A	$\begin{aligned} & \text { F1600CA03 } \\ & \text { F1600CP03 } \\ & \text { F1600FA03 } \\ & \text { F1600CB03 } \end{aligned}$	IEC/QC IEC/PC Fused IEC/QC IEC/Wire	Common Differential	$\begin{aligned} & 52 \\ & 40 \end{aligned}$	$\begin{aligned} & 65 \\ & 50 \end{aligned}$	$\begin{aligned} & 65 \\ & 60 \end{aligned}$	$\begin{aligned} & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & 65 \\ & 50 \end{aligned}$
6 A	F1600CA06 F1600CP06 F1600FA06 F1600CB06	IEC/QC IEC/PC Fused IEC/QC IEC/Wire	Common Differential	$\begin{aligned} & 45 \\ & 30 \end{aligned}$	$\begin{aligned} & 65 \\ & 45 \end{aligned}$	$\begin{aligned} & 65 \\ & 55 \end{aligned}$	$\begin{aligned} & 65 \\ & 50 \end{aligned}$	$\begin{aligned} & 65 \\ & 50 \end{aligned}$	$\begin{aligned} & 59 \\ & 50 \end{aligned}$
10A	$\begin{aligned} & \text { F1600CA10 } \\ & \text { F1600CB10 } \end{aligned}$	IEC/QC IEC/Wire	Common Differential	$\begin{aligned} & 50 \\ & 23 \end{aligned}$	$\begin{aligned} & 65 \\ & 45 \end{aligned}$	$\begin{aligned} & 65 \\ & 55 \end{aligned}$	$\begin{aligned} & 65 \\ & 50 \end{aligned}$	65 50	$\begin{aligned} & 54 \\ & 50 \end{aligned}$

NOTE: Other combinations of terminals may be specified on special order.

F1600CA (3, 6 and 10Amp) Dimensions F1600CB (3, 6 and 10Amp) Dimensions

Refer to Page 36
for Standard Mounting Cutouts

Amps	A	B	C	D	E
3 A	2.500	2.000	1.500	.550	.565
	$(63,5)$	$(50,8)$	$(38,2)$	$(14,0)$	$(14,3)$
6 A	2.500	2.000	1.500	.550	.565
	$(63,5)$	$(50,8)$	$(38,2)$	$(14,0)$	$(14,3)$
10 A	3.750	2.250	1.750	.550	.640
	$(95,2)$	$(57,2)$	$(44,5)$	$(14,0)$	$(16,3)$

F1600CP

(3 and 6Amp)
Dimensions
Refer to Page 36 for Standard Mounting Cutouts

F1600FA
(3 and 6Amp)
Dimensions

Refer to Page 36 for Standard Mounting Cutouts

Features:

- General Purpose — Designed for Applications with Higher Differential Mode Noise
- Higher Line-to-Line Capacitance for Protection from Pulsed, Intermittent or Continuous RFI
- A Cost-Effective Replacement for Independent Coil Design in Many SMPS Applications
- Available with Integral IEC Connector

F1700 Simplified Schematic

Specifications:

Rated Voltage: 250VAC Maximum - $50 / 60 \mathrm{~Hz}$ Rated Current: 115VAC 250VAC

$3 A$	$2.5 A$
$6 A$	$4 A$
$10 A$	$6 A$
$20 A$	$10 A$
$30 A$	$15 A$

Current Overload: 6X for 8 seconds Hi-Pot Test (1 min):

Line to Ground	1500VAC
Line to Line	1768 VDC

Insulation Resistance: $9 \times 10^{9} \Omega$ at 100 VDC
Ambient Temperature: $40^{\circ} \mathrm{C}$ Max. at rated current
Humidity Range: 0% to 95% R.H.
Termination:
A: QC - Quick Connect
B: Wire
C: IEC Receptacle
D: Screw
Maximum Leakage Current:

Each Line to Ground	F1700	F1710	F1720	F1740
115VAC, 60Hz:	0.40 mA	.15 mA	.002 mA	.060 mA
250VAC, $50 \mathrm{~Hz}:$	0.75 mA	.25 mA	.005 mA	.120 mA

Agency Approvals:

Except 30Amp

Nominal Current Rating	Part Number	Termination Line/Load	MINIMUM INSERTION LOSS - dB (50 ohm Circuit)						
			MODE	Frequency - MHz					
				. 15	. 50	1.0	5.0	10	30
$3 A$	F1700AA03 F1700BB03 F1700CA03	QC/QC Wire/Wire IEC/QC	Common Differential	$\begin{aligned} & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & 35 \\ & 60 \end{aligned}$	$\begin{aligned} & 43 \\ & 65 \end{aligned}$	$\begin{aligned} & 52 \\ & 65 \end{aligned}$	$\begin{aligned} & 55 \\ & 50 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$
	F1710AA03	QC/QC	Common Differential	$\begin{aligned} & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & 34 \\ & 60 \end{aligned}$	$\begin{aligned} & 40 \\ & 65 \end{aligned}$	$\begin{aligned} & 45 \\ & 65 \end{aligned}$	$\begin{aligned} & 45 \\ & 50 \end{aligned}$	$\begin{aligned} & 40 \\ & 50 \end{aligned}$
	F1720AA03	QC/QC	Common Differential	$\begin{aligned} & 20 \\ & 35 \end{aligned}$	$\begin{aligned} & 32 \\ & 60 \end{aligned}$	$\begin{aligned} & 35 \\ & 65 \end{aligned}$	$\begin{aligned} & 35 \\ & 60 \end{aligned}$	$\begin{aligned} & 35 \\ & 55 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$
	F1740AA03	QC/QC	Common Differential	$\begin{aligned} & 20 \\ & 35 \end{aligned}$	$\begin{aligned} & 30 \\ & 60 \end{aligned}$	$\begin{aligned} & 35 \\ & 65 \end{aligned}$	$\begin{aligned} & 35 \\ & 60 \end{aligned}$	$\begin{aligned} & 35 \\ & 55 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$
$6 A$	F1700AA06 F1700BB06 F1700CA06	QC/QC Wire/Wire IEC/QC	Common Differential	$\begin{aligned} & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 22 \\ & 50 \end{aligned}$	$\begin{aligned} & 30 \\ & 65 \end{aligned}$	$\begin{aligned} & 46 \\ & 60 \end{aligned}$	$\begin{aligned} & 50 \\ & 60 \end{aligned}$	$\begin{aligned} & 45 \\ & 60 \end{aligned}$
10 A	$\begin{aligned} & \text { F1700AA10 } \\ & \text { F1700BB10 } \\ & \text { F1700CA10 } \end{aligned}$	QC/QC Wire/Wire IEC/QC	Common Differential	$\begin{aligned} & 10 \\ & 20 \end{aligned}$	$\begin{aligned} & 22 \\ & 45 \end{aligned}$	$\begin{aligned} & 30 \\ & 60 \end{aligned}$	$\begin{aligned} & 46 \\ & 65 \end{aligned}$	$\begin{aligned} & 50 \\ & 60 \end{aligned}$	$\begin{aligned} & 45 \\ & 55 \end{aligned}$
$20 \mathrm{~A}$	F1700AA20	QC/QC Screw/Screw	Common Differential	$\begin{aligned} & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 22 \\ & 45 \end{aligned}$	$\begin{aligned} & 30 \\ & 60 \end{aligned}$	$\begin{aligned} & 42 \\ & 65 \end{aligned}$	$\begin{aligned} & 47 \\ & 60 \end{aligned}$	$\begin{aligned} & 40 \\ & 55 \end{aligned}$
	$\begin{aligned} & \text { F1700DD20 } \\ & \text { F1720DD20 } \end{aligned}$	Screw/Screw	Common Differential	$\begin{aligned} & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 22 \\ & 45 \end{aligned}$	$\begin{aligned} & 30 \\ & 60 \end{aligned}$	$\begin{aligned} & 42 \\ & 65 \end{aligned}$	$\begin{aligned} & 47 \\ & 60 \end{aligned}$	$\begin{aligned} & 52 \\ & 55 \end{aligned}$
30 A	F1700DD30	Screw/Screw	Common Differential	$\begin{gathered} 7 \\ 15 \end{gathered}$	$\begin{aligned} & 15 \\ & 45 \end{aligned}$	$\begin{aligned} & 20 \\ & 60 \end{aligned}$	$\begin{aligned} & 34 \\ & 65 \end{aligned}$	$\begin{aligned} & 42 \\ & 60 \end{aligned}$	$\begin{aligned} & 40 \\ & 55 \end{aligned}$

NOTE: Other combinations of terminals may be specified on special order.

F1700AA, 1710, 1720, 1740

(3, 6 and 10Amp) Dimensions

Amps	A	B	C	D	E	F
3 A	2.750	1.750	1.125	2.375	2.000	.550
	$(69,8)$	$(44,4)$	$(28,5)$	$(60,3)$	$(50,8)$	$(14,0)$
6 A	3.312	2.000	1.125	2.940	2.500	.550
	$(84,1)$	$(50,8)$	$(28,5)$	$(74,7)$	$(63,5)$	$(14,0)$
10A	3.312	2.000	1.500	2.940	2.500	.550
	$(84,1)$	$(50,8)$	$(38,2)$	$(74,7)$	$(63,5)$	$(14,0)$
20A	See 1700DD20 for Case Dimensions					

F1700BB (3, 6 and 10Amp) Dimensions

Amps	A	B	C	D	E
3 A	2.750	1.750	1.125	2.375	2.000
	$(69,8)$	$(44,4)$	$(28,5)$	$(60,3)$	$(50,8)$
6 A	3.312	2.000	1.125	2.940	2.500
	$(84,1)$	$(50,8)$	$(28,5)$	$(74,7)$	$(63,5)$
10 A	3.312	2.000	1.500	2.940	2.500
	$(84,1)$	$(50,8)$	$(38,1)$	$(74,7)$	$(63,5)$

F1700CA (3, 6 and 10Amp) Dimensions

Amps	A	B	C	D	E
3 A	2.000	2.000	1.500	.550	.565
	$(50,8)$	$(50,8)$	$(38,1)$	$(14,0)$	$(14,3)$
6 A	2.500	2.000	1.500	.550	.565
	$(63,5)$	$(50,8)$	$(38,1)$	$(14,0)$	$(14,3)$
10 A	2.500	2.000	1.500	.550	.565
	$(63,5)$	$(50,8)$	$(38,1)$	$(14,0)$	$(14,3)$

Refer to Page 36 for Standard Mounting Cutouts

F1700DD30 (30Amp) Dimensions

F1700DD20 (20Amp) Dimensions

Specifications:

Features:

- Designed for Applications Where Switching Power Supplies, SCR's and TTL Circuits Are Utilized
- Protection from Pulsed, Intermittent or Continuous RFI
- Effective CM and DM Suppression for Most FCC VDE Requirements Down to 150 KHz
- Available in Stud and Quick Connect Terminal Versions

F1760 Simplified Schematic

SINGLE PHASE FILTERS

Rated Voltage: 250VAC, Maximum - $50 / 60 \mathrm{~Hz}$
Rated Current: 115VAC 250VAC 20A 14A
Current Overload: 6X for 8 seconds
Hi-Pot Test (1 min):
Line to Ground
Line to Line
1500VAC
1768VDC

Insulation Resistance: $9 \times 10^{9} \Omega$ at 100VDC
Ambient Temperature: $40^{\circ} \mathrm{C}$ Max. at rated current
Humidity Range: 0\% to 95% R.H.
Termination:
A: QC - Quick Connect
D: Screw
Maximum Leakage Current:

Each Line to Ground	F1760/1770/1780
115VAC, $60 \mathrm{~Hz}:$	0.5 mA
250VAC, $50 \mathrm{~Hz}:$	1.0 mA

Agency Approvals:

F1770 Simplified Schematic

Nominal Current Rating	Part Number	Termination Line/Load	MINIMUM INSERTION LOSS - dB (50 ohm Circuit)							
			MODE	Frequency - MHz						
				. 15	. 50	1.0	5.0	10	20	30
3 A	$\begin{aligned} & \text { F1760AA03 } \\ & \text { F1760DD03 } \end{aligned}$	QC/QC Screw/Screw	Common Differential	$\begin{aligned} & 15 \\ & 40 \end{aligned}$	$\begin{aligned} & 30 \\ & 65 \end{aligned}$	$\begin{aligned} & 40 \\ & 65 \end{aligned}$	$\begin{aligned} & 45 \\ & 60 \end{aligned}$	$\begin{aligned} & 50 \\ & 55 \end{aligned}$	45 55	$\begin{aligned} & 45 \\ & 55 \end{aligned}$
	F1780AA03 F1780DD03	QC/QC Screw/Screw	Common Differential	$\begin{aligned} & 13 \\ & 40 \end{aligned}$	$\begin{aligned} & 25 \\ & 65 \end{aligned}$	$\begin{aligned} & 40 \\ & 65 \end{aligned}$	$\begin{aligned} & 60 \\ & 62 \end{aligned}$	$\begin{aligned} & 60 \\ & 55 \end{aligned}$	$\begin{aligned} & 55 \\ & 45 \end{aligned}$	$\begin{aligned} & 50 \\ & 45 \end{aligned}$
6 A	F1760AA06 F1760DD06	QC/QC Screw/Screw	Common Differential	$\begin{aligned} & 15 \\ & 40 \end{aligned}$	$\begin{aligned} & 30 \\ & 65 \end{aligned}$	$\begin{aligned} & 35 \\ & 65 \end{aligned}$	$\begin{aligned} & 35 \\ & 65 \end{aligned}$	$\begin{aligned} & 44 \\ & 53 \end{aligned}$	$\begin{array}{r}43 \\ 52 \\ \hline\end{array}$	42 50
	F1780AA06 F1780DD06	QC/QC Screw/Screw	Common Differential	$\begin{aligned} & 13 \\ & 40 \end{aligned}$	$\begin{aligned} & 30 \\ & 65 \end{aligned}$	$\begin{aligned} & 40 \\ & 65 \end{aligned}$	$\begin{aligned} & 65 \\ & 62 \end{aligned}$	$\begin{aligned} & 65 \\ & 55 \end{aligned}$	$\begin{aligned} & 53 \\ & 45 \end{aligned}$	$\begin{aligned} & 48 \\ & 45 \end{aligned}$
10A	$\begin{aligned} & \text { F1760AA10 } \\ & \text { F1760DD10 } \end{aligned}$	QC/QC Screw/Screw	Common Differential	$\begin{aligned} & 15 \\ & 40 \end{aligned}$	$\begin{aligned} & 30 \\ & 65 \end{aligned}$	$\begin{aligned} & 35 \\ & 65 \end{aligned}$	$\begin{aligned} & 50 \\ & 55 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 40 \\ & 50 \end{aligned}$	$\begin{aligned} & 40 \\ & 50 \end{aligned}$
	$\begin{aligned} & \text { F1780AA10 } \\ & \text { F1780DD10 } \end{aligned}$	QC/QC Screw/Screw	Common Differential	$\begin{aligned} & 13 \\ & 40 \end{aligned}$	$\begin{aligned} & 20 \\ & 65 \end{aligned}$	$\begin{aligned} & 35 \\ & 65 \end{aligned}$	$\begin{aligned} & 65 \\ & 62 \end{aligned}$	$\begin{aligned} & 65 \\ & 55 \end{aligned}$	55 45	50 45
20A	$\begin{aligned} & \text { F1760AA20 } \\ & \text { F1760DD20 } \end{aligned}$	QC/QC Screw/Screw	Common Differential	$\begin{aligned} & 12 \\ & 41 \end{aligned}$	$\begin{aligned} & 25 \\ & 65 \end{aligned}$	$\begin{aligned} & 31 \\ & 65 \end{aligned}$	$\begin{aligned} & 42 \\ & 65 \end{aligned}$	47 60	50 60	40 55
	F1780AA20 F1780DD20	QC/QC Screw/Screw	Common Differential	$\begin{aligned} & 12 \\ & 41 \end{aligned}$	$\begin{aligned} & 30 \\ & 65 \end{aligned}$	$\begin{aligned} & 32 \\ & 65 \end{aligned}$	$\begin{aligned} & 60 \\ & 65 \end{aligned}$	60 60	60 60	55 55

F1780 Simplified Schematic

(
$\mathrm{F} 1760 / \mathrm{F} 1770 / 1780 \mathrm{AA}$
$(3,6$ and 10Amp) Dimensions
(3, 6, and 10Amp) Dimensions

F1760/F1770/1780 (20Amp Only) Dimensions

Features:

- Designed for VDE "A" and FCC "B" Switching Power Supply Applications
- Low-Leakage Current
- Compact Case Sizes in Current Ratings up to 15A
- Effective Reduction of Common Mode and Differential Mode Noise from 100 KHz to 30 MHz

F2800 Simplified Schematic 3 \& 6Amp

F2800 Simplified Schematic 10 \& 15Amp

Specifications:
Rated Voltage: 250VAC Maximum - $50 / 60 \mathrm{~Hz}$
Rated Current: 115VAC 250VAC

3 A	1.5 A
6 A	4 A
10 A	6 A
15 A	12 A

Current Overload: 6X for 8 seconds
Hi -Pot Test (1 min):

$$
\begin{array}{ll}
\text { Line to Ground } & \text { 1500VAC } \\
\text { Line to Line } & \text { 1768VD }
\end{array}
$$

Insulation Resistance: $9 \times 10^{9} \Omega$ at 100 VDC
Ambient Temperature: $40^{\circ} \mathrm{C} \mathrm{Max}$. at rated current Humidity Range: 0\% to 95\% R.H.
Termination:
A: QC - Quick Connect B: Wire
Maximum Leakage Current:

Each Line to Ground	F2800
115VAC, $60 \mathrm{~Hz}:$	0.25 mA
250VAC, $50 \mathrm{~Hz}:$	0.40 mA

Agency Approvals:

Nominal Current Rating	Part Number	Termination Line/Load	MINIMUM INSERTION LOSS - dB (50 ohm Circuit)								
			MODE	Frequency - MHz							
				. 01	. 05	. 15	. 50	1.0	5.0	10	30
3A	$\begin{aligned} & \text { F2800AA03 } \\ & \text { F2800BB03 } \end{aligned}$	QC/QC Wire/Wire	Common Differential	$\begin{array}{r} 10 \\ 5 \end{array}$	$\begin{aligned} & 30 \\ & 25 \end{aligned}$	$\begin{aligned} & 35 \\ & 50 \end{aligned}$	$\begin{aligned} & 35 \\ & 60 \end{aligned}$	$\begin{aligned} & 35 \\ & 65 \end{aligned}$	$\begin{aligned} & 40 \\ & 50 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & 50 \\ & 45 \end{aligned}$
6A	F2800AA06 F2800BB06	QC/QC Wire/Wire	Common Differential	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 20 \\ & 10 \end{aligned}$	$\begin{aligned} & 30 \\ & 40 \end{aligned}$	$\begin{aligned} & 35 \\ & 60 \end{aligned}$	$\begin{aligned} & 40 \\ & 60 \end{aligned}$	$\begin{aligned} & 40 \\ & 50 \end{aligned}$	$\begin{aligned} & 40 \\ & 50 \end{aligned}$	$\begin{aligned} & 50 \\ & 45 \end{aligned}$
10A	$\begin{aligned} & \text { F2800AA10 } \\ & \text { F2800BB10 } \end{aligned}$	QC/QC Wire/Wire	Common Differential	5 7	$\begin{aligned} & 15 \\ & 20 \end{aligned}$	$\begin{aligned} & 25 \\ & 50 \end{aligned}$	$\begin{aligned} & 30 \\ & 60 \end{aligned}$	$\begin{aligned} & 35 \\ & 60 \end{aligned}$	$\begin{aligned} & 40 \\ & 60 \end{aligned}$	45 60	$\begin{aligned} & 50 \\ & 55 \end{aligned}$
15A	$\begin{aligned} & \text { F2800AA15 } \\ & \text { F2800BB15 } \end{aligned}$	QC/QC Wire/Wire	Common Differential	$\begin{array}{r} 8 \\ 10 \end{array}$	$\begin{aligned} & 21 \\ & 30 \end{aligned}$	$\begin{aligned} & 29 \\ & 70 \end{aligned}$	$\begin{aligned} & 33 \\ & 70 \end{aligned}$	$\begin{aligned} & 36 \\ & 70 \end{aligned}$	38 70	45 70	$\begin{aligned} & 50 \\ & 60 \end{aligned}$

F2800AA F2800BB (15Amp) Dimensions

Ideal for Linear Power Supplies in Digital Equipment

Features:

- General Purpose Filter with Extended HighFrequency Insertion Loss Characteristics
- Effective Suppression of Incoming Common Mode and Differential Mode Noise
- Low-Profile Package with Integral IEC Connector
- Available in 3, 6 and 10Amp Ratings

Nominal Current Rating	Part Number	Termination Line/Load
3 A	F5100CG03	IEC/ Solder Tab
6 A	F5100CG06	IEC/ Solder Tab
10 A	F5100CG10	IEC/ Solder Tab

Specifications:

Rated Voltage: 250VAC Maximum - $50 / 60 \mathrm{~Hz}$
Rated Current:

115VAC	250VAC
3 A	1.5 A
6 A	4 A
10 A	6 A

Current Overload: 6X for 8 seconds
Hi-Pot Test (1 min):

$$
\begin{array}{ll}
\text { Line to Ground } & 1400 \text { VDC } \\
\text { Line to Line } & 1450 \text { VDC }
\end{array}
$$

Insulation Resistance: $9 \times 10^{9} \Omega$ at 100 VDC
Ambient Temperature: $40^{\circ} \mathrm{C}$ Max. at rated current
Humidity Range: 0\% to 95\% R.H.
Termination:
C: IEC Receptacle
G: Wire Wrap/Solder
Maximum Leakage Current:

$$
\begin{array}{lc}
\text { Each Line to Ground } & \text { F5100 } \\
\text { 115VAC, 60Hz: } & 0.25 \mathrm{~mA} \\
\text { 250VAC, 60Hz: } & 0.50 \mathrm{~mA}
\end{array}
$$

Agency Approvals:

F5100 Simplified Schematic

F5100 SERIES
TYPICAL COMMON MODE INSERTION LOSS - dB
(50 OHM CIRCUIT)

FREQUENCY in MHz

F5100CG（3， 6 and 10Amp）Dimensions

Refer to Page 36 for Standard Mounting Cutouts

F5101CG（3， 6 and 10Amp）Dimensions with attached mounting plate

Refer to Page 37 for Standard Mounting Cutouts

Ideal for Linear Power Supplies in Digital Equipment

Features:

- General Purpose Filter with Extended HighFrequency Insertion Loss Characteristics
- Effective Suppression of Incoming Common Mode and Differential Mode Noise
- Low-Profile Package with Integral IEC Connector
- Available in 3 and 6Amp Ratings

Nominal Current Rating	Part Number	Termination Line/Load
3 A	F5200FG03	Fused IEC/ Solder Tab
6 A	F5200FG06	Fused IEC/ Solder Tab

Specifications:

Rated Voltage: 250VAC Maximum - $50 / 60 \mathrm{~Hz}$
Rated Current: 115VAC 250VAC
3A $\quad 1.5 \mathrm{~A}$
6A 4A
Current Overload: 6X for 8 seconds
Hi-Pot Test (1 min):
Line to Ground 1400VDC
Line to Line 1450VDC
Insulation Resistance: $9 \times 10^{9} \Omega$ at 100VDC
Ambient Temperature: $40^{\circ} \mathrm{C}$ Max. at rated current Humidity Range: 0\% to 95\% R.H.
Termination:
F: Fused IEC Receptacle
G: Wire Wrap/Solder
Maximum Leakage Current:

Each Line to Ground	F5200
115VAC, $60 \mathrm{~Hz}:$	0.25 mA
250VAC, $60 \mathrm{~Hz}:$	0.50 mA

Agency Approvals:

F5200 Simplified Schematic

F5200 SERIES
TYPICAL COMMON MODE INSERTION LOSS - dB
(50 OHM CIRCUIT)

FREQUENCY in MHz

F5200FG (3 and 6Amp) Dimensions

Refer to Page 36 for Standard Mounting Cutouts

F5201FG (3 and 6Amp) Dimensions with attached mounting plate

Refer to Page 37 for Standard Mounting Cutouts

Ideal for Linear and Switching Power Supplies

Features:

- FCC and VDE Level "A" Applications
- High Inductance Single Coil Design Provides High Common Mode and Differential Mode Performance Above 150 KHz
- High-Frequency Construction Techniques Maintain $>50 \mathrm{~dB}$ Insertion Loss from 10 MHz to 1 GHz
- Compact, Space-Saving Package Available in 3, 6 and 10-Amp Ratings

F5500 Simplified Schematic

Specifications:
Rated Voltage: 250 VAC Maximum - $50 / 60 \mathrm{~Hz}$
Rated Current: 115VAC 250VAC

$3 A$	$3 A$
$6 A$	$4 A$
$10 A$	$6 A$

Current Overload: 6X for 8 seconds
Hi-Pot Test (1 min):

$$
\begin{array}{ll}
\text { Line to Ground } & 1400 \mathrm{VDC} \\
\text { Line to Line } & 1450 \mathrm{VDC}
\end{array}
$$

Insulation Resistance: $9 \times 10^{9} \Omega$ at 100 VDC
Ambient Temperature: $40^{\circ} \mathrm{C}$ Max. at rated current
Humidity Range: 0% to 95% R.H.
Termination:
C: IEC Receptacle
G: Wire Wrap/Solder
Maximum Leakage Current:

Each Line to Ground	F5500
115VAC, 60Hz:	0.25 mA
250VAC, $60 \mathrm{~Hz}:$	0.50 mA

Agency Approvals:

Nominal Current Rating	Part Number	Termination Line/Load
3 A	F5500CG03	$\mathrm{IEC/}$ Solder Tab
6 A	F5500CG06	$\mathrm{IEC/}$ Solder Tab
10 A	F5500CG10	$\mathrm{IEC/}$ Solder Tab

F5500 SERIES
TYPICAL COMMON MODE INSERTION LOSS - dB
(50 OHM CIRCUIT)

FREQUENCY in MHz

F5500CG (3, 6 and 10Amp) Dimensions

F5501CG (3, 6 and 10Amp) Dimensions with attached mounting plate

Features:

- Suited for FCC "B" and VDE "A" Switching Power Supply Applications
- High Inductance, Multi-Stage Design with High Common Mode and Differential Mode Insertion Loss for Switching Power Supply Emissions
- >70dB Insertion Loss from 200 KHz to 1 GHz
- Compact, Space-Efficient Package Available in 3 and 6Amp Ratings

Nominal Current Rating	Part Number	Termination Line/Load
3 A	F5600CG03	IEC/Solder Tab
	F5600FG03	Fused IEC/ Solder Tab
	F5600CG06	IEC/Solder Tab
	F5600FG06	Fused IEC/ Solder Tab

Specifications:

Rated Voltage: 250VAC Maximum - $50 / 60 \mathrm{~Hz}$
Rated Current: 115VAC 250VAC
3A $\quad 1.5 \mathrm{~A}$
6A 4A
Current Overload: 6X for 8 seconds
Hi-Pot Test (1 min):
Line to Ground 1400VDC
Line to Line
1450VDC
Insulation Resistance: $9 \times 10^{9} \Omega$ at 100VDC
Ambient Temperature: $40^{\circ} \mathrm{C}$ Max at rated current
Humidity Range: 0\% to 95\% R.H.
Termination:
C: IEC Receptacle
F: Fused IEC Receptacle
G: Wire Wrap/Solder
Termination: Quick Connect
Maximum Leakage Current:

Each Line to Ground	F5600
115VAC, $60 \mathrm{~Hz}:$	0.50 mA
250VAC, $60 \mathrm{~Hz}:$	1.20 mA

Agency Approvals:

F5600 Simplified Schematic

F5600 SERIES
TYPICAL COMMON MODE INSERTION LOSS - dB
(50 OHM CIRCUIT)

FREQUENCY in MHz

F5600CG (3 and 6Amp) Dimensions

F5601CG (3 and 6Amp) Dimensions with attached mounting plate

Features:

- Ideal for VDE "B" and MIL-STD-461 Switching Power Supply Applications
- Very High Inductance Design with Differential Mode Choke to Provide Improved Performance Below 100 KHz
- Wide-Band Insertion Loss >60dB from 10MHz to 1 GHz
- Compact, Space-Efficient Package Available in 3 and 6Amp Ratings

F5700 Simplified Schematic

Specifications:

Rated Voltage: 250VAC Maximum - $50 / 60 \mathrm{~Hz}$
Rated Current: 115VAC 250VAC
3A 2A

6A 4A
Current Overload: 6X for 8 seconds Hi-Pot Test (1 min):
Line to Ground 1400VDC

Insulation Resistance: $9 \times 10^{9} \Omega$ at 100VDC
Ambient Temperature: $40^{\circ} \mathrm{C}$ Max. at rated current Humidity Range: 0\% to 95\% R.H.
Termination:
C: IEC Receptacle
G: Wire Wrap/Solder

Maximum Leakage Current:

Each Line to Ground	F5700
115VAC, $60 \mathrm{~Hz}:$	0.50 mA
250VAC $60 \mathrm{~Hz}:$	1.20 mA

Agency Approvals:

Nominal Current Rating	Part Number	Termination Line/Load
3 A	F5700CG03	IEC/ Solder Tab
6 A	F5700CG06	IEC/ Solder Tab

F5700 SERIES
TYPICAL COMMON MODE INSERTION LOSS - dB
(50 OHM CIRCUIT)

F5700CG (3 and 6Amp) Dimensions

F5701CG (3 and 6Amp) Dimensions with attached mounting plate

Features:

- High Performance Filter Designed for Switching Power Supply Emissions
- $>70 \mathrm{~dB}$ Insertion Loss from 200 KHz to 1 GHz
- Integral Power Switch and $5 \times 20 \mathrm{~mm}$ Fuse Holder
- Available in 3 and 6Amp Versions with Optional Mounting Faceplates

F5900 Simplified Schematic without Switch

Specifications:

Rated Voltage: 250VAC Maximum - $50 / 60 \mathrm{~Hz}$
Rated Current: 115VAC 250VAC
3A $\quad 1.5 \mathrm{~A}$
6A 4A
Current Overload: 6X for 8 seconds
Hi-Pot Test (1 min):

Line to Ground	1500 VDC
Line to Line	1450 VDC

Insulation Resistance: $9 \times 10^{9} \Omega$ at 100VDC
Ambient Temperature: $40^{\circ} \mathrm{C}$ Max. at rated current Humidity Range: 0\% to 95\% R.H.
Termination:
C: IEC Receptacle
F: Fused IEC
G: Wire Wrap/Solder
J: Switched IEC
Maximum Leakage Current:

Each Line to Ground	F5900
115VAC, $60 \mathrm{~Hz}:$	0.50 mA
250VAC $60 \mathrm{~Hz}:$	1.20 mA

Agency Approvals:

TI

F5900 Simplified Schematic with Switch

F5900 SERIES
TYPICAL COMMON MODE INSERTION LOSS - dB
(50 OHM CIRCUIT)

FREQUENCY in MHz

F5900CG

（3 and 6Amp）
Dimensions

Refer to Page 37 for Standard Mounting Cutouts

F5900FG（3 and 6Amp）Dimensions
Refer to Page 37 for Standard Mounting Cutouts

F5900JG
（3 and 6Amp）
Dimensions
Refer to Page 37
for Standard Mounting Cutouts

Nominal Current Rating	Part Number	Termination Line／Load
3 A	F5900CG03	IEC／Solder Tab
	F5900FG03	Fused IEC／Solder Tab
	F5900JG03	Switched IEC／Solder Tab
	F5900CG06	IEC／Solder Tab
	F5900FG06	Fused IEC／Solder Tab
	F5900JG06	Switched IEC／Solder Tab

Standard Mounting Cutouts

How to Order

The Curtis part numbering system is made up of four elements. Each element denotes a specific requirement (mechanical or electrical) which, when properly sequenced, fully identifies the required catalog filter. As shown, the first five alpha/numeric characters denote the series type; the sixth character (alpha) denotes the type of line termination; the seventh character (alpha) denotes the type of load termination; the last two characters (numeric) denote the current rating.
Compose your part number as follows: Select the series required, add two alpha character for the line and load termination, followed by two numeric characters for the required current rating. For example, F1100AB06 completely identifies an F 1100 series filter with quick connects on line side and wire leads on load side, with a 6 -amp rating.

F1100	X X	X
SERIES -		CURRENT
PE = Power Entry		RATING
PM $=$ Medical		$01=1 \mathrm{Amp}$
Power Entry		$03=3 \mathrm{Amps}$
		$06=6 \mathrm{Amps}$
LINE TERMINATION		$10=10 \mathrm{Amps}$
A = Quick Connects		$15=15 \mathrm{Amps}$
$B=$ Wire Leads	LOAD	$20=20 \mathrm{Amps}$
C= IEC Connector	TERMINATION	$30=30 \mathrm{Amps}$
D= Screw Terminals	A = Quick Connects	
(20 \& 30 amp only)	$B=$ Wire Leads	
$F=$ Fused IEC	$D=$ Screw Terminals	
$\mathrm{P}=$ Printed Circuit Pins	(20 \& 30 amp only)	
W= Dual Fused IEC	$\mathrm{P}=$ Printed Circuit Pins	
J = Switched IEC	S = Solder Tab	

F1500FA, F1600FA,

F1300CP, F1600CP

F5500/5600/5700 SERIES

F5100 SERIES

F5101 SERIES

F5200 SERIES

F5201 SERIES

F5501/5601/5701 SERIES

NOTE: Tolerance for all dimensions unless otherwise specified: .XXX three place $\pm .004, . \mathrm{XX}$ two place ± 0.10

Standard Mounting Cutouts

F5900FG

F5900CG

F5900JG

NOTE: Tolerance for all dimensions unless otherwise specified: .XXX three place $\pm .004, . \mathrm{XX}$ two place ± 0.10

POWER ENTRY MODULES

General Purpose

Combination

Features:

- General Purpose Filters - Designed for Common Mode Emissions or Susceptibility Applications
- Integral IEC Connector in Space-Efficient Package
- Ideal for Linear Power Supplies in Digital Equipment

F2100/F2200 Simplified Schematic

Specifications:

Rated Voltage: 250VAC Maximum - $50 / 60 \mathrm{~Hz}$
Rated Current: 115VAC 250VAC

$1 A$	$1 A$
$3 A$	$3 A$
$6 A$	$6 A$
$10 A$	$8 A$

Current Overload: 6X for 8 seconds
Hi-Pot Test (1 min):
$\begin{array}{ll}\text { Line to Ground } & \text { 1500VAC } \\ \text { Line to Line } & 1768 \text { VDC }\end{array}$
Insulation Resistance: $9 \times 10^{9} \Omega$ at 100 VDC
Ambient Temperature: $40^{\circ} \mathrm{C}$ Max. at rated current
Humidity Range: 0\% to 95% R.H.
Termination:
A: QC - Quick Connect
C: IEC Receptacle
Maximum Leakage Current:
Each Line to Ground 115VAC, 60Hz:
F2100/F2200
250VAC, 50Hz:
0.25 mA
0.40 mA

Agency Approvals:

Nominal Current Rating	Part Number	Termination Line/Load	MINIMUM INSERTION LOSS - dB (50 ohm Circuit)						
			MODE	Frequency - MHz					
				. 15	. 50	1.0	5.0	10	30
1 A	$\begin{aligned} & \text { F2100CA01 } \\ & \text { F2200CA01 } \end{aligned}$	IEC/QC IEC/QC	Common Differential	22	$\begin{array}{r} 35 \\ 2 \end{array}$	$\begin{array}{r} 40 \\ 3 \end{array}$	$\begin{aligned} & 46 \\ & 35 \end{aligned}$	$\begin{aligned} & 50 \\ & 40 \end{aligned}$	$\begin{aligned} & 50 \\ & 40 \end{aligned}$
3A	$\begin{aligned} & \text { F2100CA03 } \\ & \text { F2200CA03 } \end{aligned}$	IEC/QC IEC/QC	Common Differential	15	$\begin{array}{r} 25 \\ 2 \end{array}$	30 3	$\begin{aligned} & 45 \\ & 35 \end{aligned}$	$\begin{aligned} & 50 \\ & 40 \end{aligned}$	$\begin{aligned} & 50 \\ & 40 \end{aligned}$
6 A	$\begin{aligned} & \text { F2100CA06 } \\ & \text { F2200CA06 } \end{aligned}$	IEC/QC IEC/QC	Common Differential	10	20 2	29 7	$\begin{aligned} & 43 \\ & 28 \end{aligned}$	$\begin{aligned} & 45 \\ & 46 \end{aligned}$	$\begin{aligned} & 50 \\ & 57 \end{aligned}$
10A	F2100CA10	IEC/QC	Common Differential	9 -	17 2	23 7	39 12	45 37	$\begin{aligned} & 45 \\ & 60 \end{aligned}$

NOTE: Other combinations of terminals may be specified on special order.

F2100CA

(1, 3 and 6Amp)
Dimensions

Refer to Page 62 for Standard Mounting Cutouts

F2200CA

(1, 3 and 6Amp)
Dimensions
Refer to Page 62 for Standard Mounting Cutouts

F2100CA10
(10Amp)
Dimensions
Refer to Page 62
for Standard Mounting Cutouts

Features:

- Effective Protection from Pulsed, Intermittent or Continuous RFI for FCC "A" Applications
- High-Performance Low-Leakage Filter in Low Profile Package with Integral IEC Connector
- Increased Inductance and Line-to-Line Capacitance Provide Enhanced Common Mode and Differential Mode Attenuation

F2300CA Simplified Schematic

Nominal Current Rating	Part Number	Termination Line/Load	MINIMUM INSERTION LOSS - dB (50 ohm Circuit)						
			MODE	Frequency - MHz					
				. 15	. 50	1.0	5.0	10	30
6 A	F2300CA06	IEC/QC	Common Differential	$\begin{aligned} & 25 \\ & 12 \end{aligned}$	37 30	45 50	45 65	45 65	$\begin{aligned} & 45 \\ & 60 \end{aligned}$

NOTE: Other combinations of terminals may be specified on special order.

Features:

- Higher Performance Filters Designed for Common Mode and Differential Mode Applications
- 4X Greater Differential Mode Insertion Loss at 1 MHz than F2100/F2200 Series with No Increase in Physical Size
- Especially Suited for Use with Linear Power Supplies and FCC "A" Applications

F2400/2500 Simplified Schematic

Specifications:

Rated Voltage: 250VAC Maximum - $50 / 60 \mathrm{~Hz}$
Rated Current: 115VAC 250VAC

$3 A$	$1.5 A$
$6 A$	$3 A$
$10 A$	$10 A$

15A 10A
Current Overload: 6X for 8 seconds
Hi-Pot Test (1 min):

$$
\begin{array}{ll}
\text { Line to Ground } & \text { 1500VAC } \\
\text { Line to Line } & 1768 \text { VDC }
\end{array}
$$

Insulation Resistance: $9 \times 10^{9} \Omega$ at 100VDC
Ambient Temperature: $40^{\circ} \mathrm{C}$ Max. at rated current Humidity Range: 0\% to 95\% R.H.
Termination:
A: QC - Quick Connect
C: IEC Receptacle
Maximum Leakage Current:

$$
\begin{array}{lc}
\text { Each Line to Ground } & \text { F2400/F2500 } \\
\text { 115VAC, 60Hz: } & 0.25 \mathrm{~mA} \\
\text { 250VAC, } 50 \mathrm{~Hz}: & 0.40 \mathrm{~mA}
\end{array}
$$

Agency Approvals:

Nominal Current Rating	Part Number	Termination Line/Load	MINIMUM INSERTION LOSS - dB (50 ohm Circuit)						
			MODE	Frequency - MHz					
				. 15	. 50	1.0	5.0	10	30
3 A	$\begin{aligned} & \text { F2400CA03 } \\ & \text { F2500CA03 } \end{aligned}$	IEC/QC IEC/QC	Common Differential	$\begin{array}{r} 22 \\ 8 \end{array}$	$\begin{aligned} & 35 \\ & 18 \end{aligned}$	$\begin{aligned} & 40 \\ & 24 \end{aligned}$	$\begin{aligned} & 46 \\ & 40 \end{aligned}$	50 50	$\begin{aligned} & 50 \\ & 40 \end{aligned}$
6 A	$\begin{aligned} & \text { F2400CA06 } \\ & \text { F2500CA06 } \end{aligned}$	IEC/QC IEC/QC	Common Differential	$\begin{array}{r} 15 \\ 8 \end{array}$	$\begin{aligned} & 24 \\ & 18 \end{aligned}$	31 24	42 40	45 50	$\begin{aligned} & 50 \\ & 40 \end{aligned}$
10/15A	$\begin{aligned} & \text { F2400CA10 } \\ & \text { F2400CA15 } \end{aligned}$	IEC/QC IEC/QC	Common Differential	4	10 8	$\begin{aligned} & 13 \\ & 15 \end{aligned}$	28 30	35 35	$\begin{aligned} & 40 \\ & 35 \end{aligned}$

NOTE: Other combinations of terminals may be specified on special order.

F2400CA (3, 6, 10 and 15Amp) Dimensions

F2500CA (3 and 6Amp) Dimensions

Features:

- General Purpose "L-Type" Circuit Effective in Reducing Both Incoming and Outgoing Powerline Noise Levels in FCC "A" Applications
- Integral $5 \times 20 \mathrm{~mm}$ Single or Dual Fused IEC Connector
- Optional SST Switched IEC Connector
- All Series Available in Labor-Saving PC Mounted Case Style

Specifications:'

Rated Voltage: 250VAC Maximum - $50 / 60 \mathrm{~Hz}$
Rated Current: 115VAC 250VAC
3A 3A

Current Overload: 6X for 8 seconds
Hi-Pot Test (1 min):
$\begin{array}{ll}\text { Line to Ground } & \text { 1500VAC } \\ \text { Line to Line } & 1768 \text { VDC }\end{array}$
Insulation Resistance: $9 \times 10^{9} \Omega$ at 100VDC
Ambient Temperature: $40^{\circ} \mathrm{C}$ Max at rated current
Humidity Range: 0\% to 95% R.H.
Termination:
A: QC - Quick Connect
F: Fused IEC
J: Switched IEC
P: PC - P.C. Board
W: Dual Fused IEC
Maximum Leakage Current:

Each Line to Ground	F2600
115VAC, 60Hz:	0.25 mA
250VAC, $50 \mathrm{~Hz}:$	0.40 mA

Agency Approvals:

F2600F Simplified Schematic

Nominal Current Rating	Part Number	Termination Line/Load	MINIMUM INSERTION LOSS - dB (50 ohm Circuit)						
			MODE	Frequency - MHz					
				. 15	. 50	1.0	5.0	10	30
3 A	F2600FA03 F2600FP03	Fused IEC/QC Fused IEC/PC	Common Differential	21 8	$\begin{aligned} & 35 \\ & 18 \end{aligned}$	$\begin{aligned} & 41 \\ & 24 \end{aligned}$	$\begin{aligned} & 50 \\ & 40 \end{aligned}$	50 50	50 40
6 A	F2600FA06 F2600FP06	Fused IEC/QC Fused IEC/PC	Common Differential	$\begin{array}{r} 18 \\ 8 \end{array}$	$\begin{aligned} & 34 \\ & 18 \end{aligned}$	$\begin{aligned} & 41 \\ & 24 \end{aligned}$	$\begin{aligned} & 45 \\ & 40 \end{aligned}$	$\begin{aligned} & 45 \\ & 50 \end{aligned}$	$\begin{aligned} & 45 \\ & 50 \end{aligned}$
3 A	F2600WA03 F2600WP03	Dual Fused IEC/QC Dual Fused IEC/PC	Common Differential	$\begin{array}{r} 21 \\ 8 \end{array}$	$\begin{aligned} & 35 \\ & 18 \end{aligned}$	$\begin{aligned} & 41 \\ & 24 \end{aligned}$	$\begin{aligned} & 45 \\ & 40 \end{aligned}$	$\begin{aligned} & 45 \\ & 50 \end{aligned}$	$\begin{aligned} & 50 \\ & 40 \end{aligned}$
6 A	F2600WA06 F2600WP06	Dual Fused IEC/QC Dual Fused IEC/PC	Common Differential	$\begin{array}{r} 18 \\ 8 \end{array}$	$\begin{aligned} & 34 \\ & 18 \end{aligned}$	$\begin{aligned} & 41 \\ & 24 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$	40 50	$\begin{aligned} & 45 \\ & 50 \end{aligned}$
3 A	F2600JA03 F2600JP03	Switched IEC/QC Switched IEC/PC	Common Differential	$\begin{array}{r} 21 \\ 8 \end{array}$	$\begin{aligned} & 35 \\ & 18 \end{aligned}$	$\begin{aligned} & 41 \\ & 24 \end{aligned}$	$\begin{aligned} & 45 \\ & 40 \end{aligned}$	$\begin{aligned} & 45 \\ & 50 \end{aligned}$	$\begin{aligned} & 50 \\ & 40 \end{aligned}$
6 A	$\begin{aligned} & \text { F2600JA06 } \\ & \text { F2600JP06 } \end{aligned}$	Switched IEC/QC Switched IEC/PC	Common Differential	18 8	34 18	41 24	40 40	40 50	45 50

NOTE: Other combinations of terminals may be specified on special order.

F2600FA (3 and 6Amp) Dimensions

F2600WA (3 and 6Amp) Dimensions

F2600W Simplified Schematic

F2600FP (3 and 6Amp) Dimensions

F2600JA (3 and 6Amp) Dimensions

F2600J Simplified Schematic

Features:

- Designed for FCC "B" and VDE "B" Switching Power Supply Applications
- Very High Inductance Design with Differential Mode Choke to Provide Improved Performance Below 100KHz
- Compact, Space-Efficient Package Available in 3 and 6Amp Ratings
- Also Available with Integal Fused IEC Connector and "ON/OFF" Power Switch

Specifications:

Rated Voltage: 250VAC Maximum $-50 / 60 \mathrm{~Hz}$ Rated Current: 115VAC 250VAC

$3 A$	$2 A$
$6 A$	$4 A$

Current Overload: 6X for 8 seconds
Hi-Pot Test (1 min):

$$
\begin{array}{ll}
\text { Line to Ground } & \text { 1500VAC } \\
\text { Line to Line } & 1768 \text { VDC }
\end{array}
$$

Insulation Resistance: $9 \times 10^{9} \Omega$ at 100 VDC
Ambient Temperature: $40^{\circ} \mathrm{C}$ Max. at rated current Humidity Range: 0\% to 95\% R.H.
Termination:
A: QC - Quick Connect
B: Wire
C: IEC Receptacle
F: Fused IEC
Maximum Leakage Current:

Each Line to Ground	F2700
115VAC, $60 \mathrm{~Hz}:$	0.25 mA
250VAC, $50 \mathrm{~Hz}:$	0.40 mA

Agency Approvals:

F2700 Without Switch Simplified Schematic

F2700 Without Switch
Simplified Schematic (3Amp Only)

Nominal Current Rating	Part Number	Termination Line/Load	MINIMUM INSERTION LOSS - dB (50 ohm Circuit)									
			MODE	Frequency - MHz								
				. 01	. 02	. 05	. 15	. 50	1.0	5.0	10	30
3 A	F2700AA03	QC/QC	Common Differential	$\begin{array}{r} 20 \\ 5 \end{array}$	$\begin{aligned} & 27 \\ & 27 \end{aligned}$	$\begin{aligned} & 36 \\ & 52 \end{aligned}$	$\begin{aligned} & 45 \\ & 70 \end{aligned}$	$\begin{aligned} & 42 \\ & 70 \end{aligned}$	$\begin{aligned} & 42 \\ & 70 \end{aligned}$	$\begin{aligned} & 42 \\ & 70 \end{aligned}$	$\begin{aligned} & 40 \\ & 60 \end{aligned}$	38 58
	$\begin{aligned} & \text { F2700CA03 } \\ & \text { F2700FB03 } \end{aligned}$	IEC/QC Fused IEC/Wire	Common Differential	$\begin{array}{r} 20 \\ 5 \end{array}$	$\begin{aligned} & 27 \\ & 27 \end{aligned}$	$\begin{aligned} & 36 \\ & 52 \end{aligned}$	$\begin{aligned} & 45 \\ & 70 \end{aligned}$	$\begin{aligned} & 42 \\ & 70 \end{aligned}$	$\begin{aligned} & 42 \\ & 70 \end{aligned}$	$\begin{aligned} & 42 \\ & 70 \end{aligned}$	$\begin{aligned} & 40 \\ & 60 \end{aligned}$	$\begin{aligned} & 38 \\ & 58 \end{aligned}$
6A	F2700AA06 F2700CA06	QC/QC IEC/QC	Common Differential	$\begin{array}{r} 10 \\ 5 \end{array}$	$\begin{aligned} & 18 \\ & 20 \end{aligned}$	$\begin{aligned} & 28 \\ & 48 \end{aligned}$	$\begin{aligned} & 39 \\ & 70 \end{aligned}$	$\begin{aligned} & 42 \\ & 70 \end{aligned}$	45 70	$\begin{aligned} & 45 \\ & 70 \end{aligned}$	45 70	45

NOTE: Other combinations of terminals may be specified on special order.

F2700AA (3 and 6Amp) Dimensions

Amps	A	B	C	D	E	F
3 A	3.315	2.000	1.500	2.940	2.500	.550
	$(84,2)$	$(50,8)$	$(38,1)$	$(74,7)$	$(63,5)$	$(14,0)$
6 A	4.440	2.250	1.750	4.063	3.620	.550
	$(112,8)$	$(57,2)$	$(44,5)$	$(103,2)$	$(91,9)$	$(14,0)$

F2700FB03 (3Amp) Dimensions

F2700CA (3 and 6Amp) Dimensions

(2) 6-32 UNC2B

Amps	A	B	C	D	E
3 A	2.880	2.125	1.719	.550	.575
	$(73,2)$	$(54,0)$	$(43,6)$	$(14,0)$	$(14,6)$
6 A	3.750	2.250	1.750	.550	.640
	$(95,2)$	$(57,1)$	$(44,4)$	$(14,0)$	$(16,29)$

Features:

- Designed to Meet UL544 Specification for Medical and Dental Equipment. Available to UL/IEC 60601 Standard
- F3400/F3500 Have Enhanced Differential Mode Performance
- Effective in Other Low-Leakage Current Applications

F3000/F3100/F3200 Series Simplified Schematic

Specifications:

Rated Voltage: 250VAC Maximum - $50 / 60 \mathrm{~Hz}$
Rated Current: 115VAC 250VAC
3A 3A

Current Overload: 6X for 8 seconds Hi-Pot Test (1 min):
Line to Ground
1500VAC
Line to Line
1768VDC

Insulation Resistance: $9 \times 10^{9} \Omega$ at 100 VDC
Ambient Temperature: $40^{\circ} \mathrm{C}$ Max at rated current Humidity Range: 0\% to 95\% R.H. Termination:

A: QC - Quick Connect
C: IEC Receptacle
Maximum Leakage Current:
Each Line to Ground F3000 Series 115VAC, 60Hz: $\quad 2 \mu \mathrm{~A}$ 250VAC, $50 \mathrm{~Hz}: \quad 5 \mu \mathrm{~A}$
Agency Approvals:
장․ C

F3400/F3500 Series Simplified Schematic

Nominal Current Rating	Part Number	Termination Line/Load	MINIMUM INSERTION LOSS - dB (50 ohm Circuit)						
			MODE	Frequency - MHz					
				. 15	. 50	1.0	5.0	10	30
3 A	F3400CA03 F3500CA03	IEC/QC IEC/QC	Common Differential	$\begin{array}{r} 22 \\ 8 \end{array}$	32 18	35 24	$\begin{aligned} & 30 \\ & 35 \end{aligned}$	25 35	20 35
6 A	F3000AA06 F3100CA06 F3200CA06	QC/QC IEC/QC IEC/QC	Common Differential	10	20 2	23 8	25 32	23 34	$\begin{aligned} & 15 \\ & 23 \end{aligned}$
	F3400CA06 F3500CA06	IEC/QC IEC/QC	Common Differential	15 8	21 18	24 24	24 35	22 35	$\begin{aligned} & 26 \\ & 35 \end{aligned}$

NOTE: Other combinations of terminals may be specified on special order.

F3000AA

(6Amp) Dimensions

F3100CA
(6Amp)
F3400CA
(3 and 6Amp)
Dimensions
Refer to Page 62 for Standard Mounting Cutouts

F3200CA
(6Amp)
F3500CA
(3 and 6Amp)
Dimensions
Refer to Page 62 for Standard Mounting Cutouts

Features:

- General Purpose "L-Type" Circuit Effective in Reducing Both Incoming and Outgoing Powerline Noise Levels in FCC "A" Applications
- Integral $5 \times 20 \mathrm{~mm}$ Single or Dual Fused IEC Connector
- Optional SST Switched IEC Connector
- Low-Leakage
- Available to UL/IEC 60601 Standard and Meets UL 544 Specification for Medical and Dental Applications
- Available in Labor-Saving PC Mounted Case Style

Specifications:

Rated Voltage: 250VAC Maximum - $50 / 60 \mathrm{~Hz}$
Rated Current: 115VAC 250VAC

$3 A$	$3 A$
$6 A$	$6 A$

Current Overload: 6X for 8 seconds
Hi-Pot Test (1 min):

$$
\begin{array}{ll}
\text { Line to Ground } & 1500 \text { VAC } \\
\text { Line to Line } & 1768 \text { VDC }
\end{array}
$$

Insulation Resistance: $9 \times 10^{9} \Omega$ at 100 VDC
Ambient Temperature: $40^{\circ} \mathrm{C}$ Max. at Rated Current
Humidity Range: 0\% to 95% R.H.
Termination:
A: QC - Quick Connect
F: Fused IEC
J: Switched IEC
P: PC - P.C. Board
W: Dual Fused IEC

Maximum Leakage Current:

Each Line to Ground	F3300
115VAC, 60Hz:	.015 mA
250VAC, $50 \mathrm{~Hz}:$.025 mA

Agency Approvals:

F3300F Simplified Schematic

Nominal Current Rating	Part Number	Termination Line/Load	MINIMUM INSERTION LOSS - dB (50 ohm Circuit)						
			MODE	Frequency - MHz					
				. 15	. 50	1.0	5.0	10	30
$3 A$	$\begin{aligned} & \text { F3300FA03 } \\ & \text { F3300FP03 } \end{aligned}$	Fused IEC/QC Fused IEC/PC	Common Differential	$\begin{array}{r} 21 \\ 8 \end{array}$	$\begin{aligned} & 32 \\ & 18 \end{aligned}$	$\begin{aligned} & 36 \\ & 24 \end{aligned}$	$\begin{aligned} & 30 \\ & 35 \end{aligned}$	$\begin{aligned} & 28 \\ & 35 \end{aligned}$	$\begin{aligned} & 28 \\ & 35 \end{aligned}$
$6 A$	F3300FA06 F3300FP06	Fused IEC/QC Fused IEC/PC	Common Differential	$\begin{array}{r} 18 \\ 8 \end{array}$	$\begin{aligned} & 30 \\ & 18 \end{aligned}$	$\begin{aligned} & 34 \\ & 24 \end{aligned}$	$\begin{aligned} & 26 \\ & 35 \end{aligned}$	$\begin{aligned} & 25 \\ & 35 \end{aligned}$	$\begin{aligned} & 25 \\ & 35 \end{aligned}$
$3 A$	F3300WA03 F3300WP03	Dual Fused IEC/QC Dual Fused IEC/PC	Common Differential	$\begin{array}{r} 21 \\ 8 \end{array}$	$\begin{aligned} & 32 \\ & 18 \end{aligned}$	$\begin{aligned} & 36 \\ & 24 \end{aligned}$	$\begin{aligned} & 30 \\ & 35 \end{aligned}$	$\begin{aligned} & 28 \\ & 35 \end{aligned}$	$\begin{aligned} & 28 \\ & 35 \end{aligned}$
$6 A$	F3300WA06 F3300WP06	Dual Fused IEC/QC Dual Fused IEC/PC	Common Differential	$\begin{array}{r} 18 \\ 8 \end{array}$	$\begin{aligned} & 30 \\ & 18 \end{aligned}$	$\begin{aligned} & 34 \\ & 24 \end{aligned}$	$\begin{aligned} & 26 \\ & 35 \end{aligned}$	$\begin{aligned} & 25 \\ & 35 \end{aligned}$	$\begin{aligned} & 25 \\ & 35 \end{aligned}$
$3 A$	$\begin{aligned} & \text { F3300JA03 } \\ & \text { F3300JP03 } \end{aligned}$	Switched IEC/QC Switched IEC/PC	Common Differential	$\begin{array}{r} 21 \\ 8 \end{array}$	$\begin{aligned} & 32 \\ & 18 \end{aligned}$	$\begin{aligned} & 36 \\ & 24 \end{aligned}$	$\begin{aligned} & 30 \\ & 35 \end{aligned}$	$\begin{aligned} & 28 \\ & 35 \end{aligned}$	$\begin{aligned} & 28 \\ & 35 \end{aligned}$
$6 A$	$\begin{aligned} & \text { F3300JA06 } \\ & \text { F3300JP06 } \end{aligned}$	Switched IEC/QC Switched IEC/PC	Common Differential	$\begin{array}{r} 18 \\ 8 \end{array}$	$\begin{aligned} & 30 \\ & 18 \end{aligned}$	$\begin{aligned} & 34 \\ & 24 \end{aligned}$	$\begin{aligned} & 26 \\ & 35 \end{aligned}$	$\begin{aligned} & 25 \\ & 35 \end{aligned}$	$\begin{aligned} & 25 \\ & 35 \end{aligned}$

NOTE: Other combinations of terminals may be specified on special order.

F3300FA (3 and 6Amp) Dimensions

F3300WA (3 and 6Amp) Dimensions
F3300W Simplified Schematic

F3300FP (3 and 6Amp) Dimensions

F3300JA (3 and 6Amp) Dimensions

F3300J Simplified Schematic

Features:

- RFI Filter Module Combines IEC Connector, Fusing, and Voltage Select Features in One Unit
- PE7 Series Filters Provide 20\% More Differential Mode Attenuation Than Comparable Units
- Accepts Either U.S. or European Standard Fuse Sizes
- Available to UL/IEC 60601 Standard and Meets UL 544 Specification for Medical and Dental Applications

Specifications:

Rated Voltage: 250 VAC Maximum - $50 / 60 \mathrm{~Hz}$
Rated Current: 115VAC 250VAC
3A 3A

6A 6A
Current Overload: 6X for 8 Seconds
Hi-Pot Test (1 min):

Line to Ground	1500VAC
Line to Line	1768 VDC

Insulation Resistance: $9 \times 10^{9} \Omega$ at 100 VDC
Ambient Temperature: $40^{\circ} \mathrm{C}$ Max. at Rated Current Humidity Range: 0\% to 95% R.H.
Termination:

- IEC Receptacle
- Wire Wrap/Solder

Maximum Leakage Current:

Each Line to Ground	PE7	PM7
115VAC, $60 \mathrm{~Hz}:$	0.25 mA	0.002 mA
250VAC, $50 \mathrm{~Hz}:$	0.40 mA	0.005 mA

Voltage Select Card: Installed in 120VAC position unless otherwise specified
Agency Approvals:

Refer to Page 59 for Ordering Instructions

PE7/PM7 Series Simplified Schematic

Nominal Current Rating	Part Number	Termination Line/Load	MINIMUM INSERTION LOSS - dB (50 ohm Circuit)						
			MODE	Frequency - MHz					
				. 15	. 50	1.0	5.0	10	30
$3 A$	PE7XXX03	IEC/Solder Tabs	Common Differential	$\begin{array}{r} 18 \\ 8 \end{array}$	$\begin{aligned} & 24 \\ & 18 \end{aligned}$	$\begin{aligned} & 30 \\ & 24 \end{aligned}$	$\begin{aligned} & 45 \\ & 46 \end{aligned}$	$\begin{aligned} & 45 \\ & 50 \end{aligned}$	$\begin{aligned} & 50 \\ & 40 \end{aligned}$
	PM7XXX03	IEC/Solder Tabs	Common Differential	$\begin{array}{r} 14 \\ 8 \end{array}$	$\begin{aligned} & 20 \\ & 18 \end{aligned}$	$\begin{aligned} & 22 \\ & 24 \end{aligned}$	$\begin{aligned} & 24 \\ & 32 \end{aligned}$	$\begin{aligned} & 22 \\ & 30 \end{aligned}$	$\begin{aligned} & 15 \\ & 30 \end{aligned}$
6 A	PE7XXX06	IEC/Solder Tabs	Common Differential	$\begin{array}{r} 10 \\ 8 \end{array}$	$\begin{aligned} & 19 \\ & 18 \end{aligned}$	$\begin{aligned} & 24 \\ & 24 \end{aligned}$	39 39	44 40	$\begin{aligned} & 50 \\ & 40 \end{aligned}$
	PM7XXXX0	IEC/Solder Tabs	Common Differential	$\begin{array}{r} 10 \\ 8 \end{array}$	$\begin{aligned} & 15 \\ & 18 \end{aligned}$	$\begin{aligned} & 18 \\ & 24 \end{aligned}$	$\begin{aligned} & 18 \\ & 32 \end{aligned}$	$\begin{aligned} & 18 \\ & 28 \end{aligned}$	$\begin{aligned} & 15 \\ & 25 \end{aligned}$

PE7IPM7
Snap-Mount
Series
(3 and 6Amp) Dimensions

Refer to Page 59 for Standard Mounting Cutouts

PE7IPM7
Screw-Mount Series
(3 and 6Amp)
Dimensions

Refer to Page 59 for Standard Mounting Cutouts

Features:

- RFI Filter Module Combines IEC Connector, Fusing and On/Off Switch in One Unit
- Accepts Either U.S. or European Standard Fuse Sizes
- PE8 Series Filters Provide 20\% More Differential Mode Attenuation than Comparable Units
- Available to UL/IEC 60601 Standard and Meets UL 544 Specification for Medical and Dental Applications

Specifications:
Rated Voltage: 250VAC Maximum - $50 / 60 \mathrm{~Hz}$
Rated Current: 115VAC 250VAC
3A 3A

6A 6A
Current Overload: 6X for 8 seconds
Hi-Pot Test (1 min):

Line to Ground	1500VAC
Line to Line	1768 VDC

Insulation Resistance: $9 \times 10^{9} \Omega$ at 100VDC
Ambient Temperature: $40^{\circ} \mathrm{C}$ Max. at rated current Humidity Range: 0\% to 95% R.H.
Termination:

- IEC Receptacle
- Wire Wrap/Solder

Maximum Leakage Current:

Each Line to Ground	PE8	PM8
115VAC, $60 \mathrm{~Hz}:$	0.25 mA	0.002 mA
250VAC, $50 \mathrm{~Hz}:$	0.40 mA	0.005 mA

Agency Approvals:

멤 (ब)

Refer to Page 59 for Ordering Instructions

PE8/PM8 Simplified Schematic

Nominal Current Rating	Part Number	Termination Line/Load	MINIMUM INSERTION LOSS - dB (50 ohm Circuit)						
			MODE	Frequency - MHz					
				. 15	. 50	1.0	5.0	10	30
$3 A$	PE8XXX03	IEC/Solder Tabs	Common Differential	$\begin{array}{r} 18 \\ 8 \end{array}$	$\begin{aligned} & 24 \\ & 18 \end{aligned}$	$\begin{aligned} & 30 \\ & 24 \end{aligned}$	$\begin{aligned} & 45 \\ & 46 \end{aligned}$	$\begin{aligned} & 45 \\ & 50 \end{aligned}$	$\begin{aligned} & 50 \\ & 40 \end{aligned}$
	PM8XXX03	$\begin{aligned} & \text { IEC/Solder } \\ & \text { Tabs } \end{aligned}$	Common Differential	14 8	$\begin{aligned} & 20 \\ & 18 \end{aligned}$	$\begin{aligned} & 22 \\ & 24 \end{aligned}$	$\begin{aligned} & 24 \\ & 32 \end{aligned}$	22 30	$\begin{aligned} & 15 \\ & 30 \end{aligned}$
6 A	PE8XXX06	$\begin{aligned} & \text { IEC/Solder } \\ & \text { Tabs } \end{aligned}$	Common Differential	10 8	$\begin{aligned} & 19 \\ & 18 \end{aligned}$	$\begin{aligned} & 24 \\ & 24 \end{aligned}$	$\begin{aligned} & 39 \\ & 39 \end{aligned}$	44 40	$\begin{aligned} & 50 \\ & 40 \end{aligned}$
	PM8XXX06	IEC/Solder Tabs	Common Differential	10 8	$\begin{aligned} & 15 \\ & 18 \end{aligned}$	$\begin{aligned} & 18 \\ & 24 \end{aligned}$	$\begin{aligned} & 18 \\ & 32 \end{aligned}$	18 28	$\begin{aligned} & 15 \\ & 25 \end{aligned}$

PE8/PM8

Snap-Mount Series
(3 and 6Amp) Dimensions

Refer to Page 59 for Standard Mounting Cutouts

PE8/PM8 Screw-Mount Series
(3 and 6Amp) Dimensions

Refer to Page 59 for Standard Mounting Cutouts

Features:

- RFI Filter Module Combines IEC Connector, Fusing, Voltage Select and On/Off Switch into a Single, SpaceEfficient Assembly
- PE90 Series Filters Provide 20\% More Differential Mode Attenuation Than Comparable Units
- Accepts Either U.S. or European Standard Fuse Sizes
- Available to UL/IEC 60601 Standard and Meets UL 544 Specification for Medical and Dental Applications

Specifications:

Rated Voltage: 250VAC Maximum - $50 / 60 \mathrm{~Hz}$
Rated Current: 115VAC 250VAC
3A 3A

6A 6A
Current Overload: 6X for 8 seconds
Hi-Pot Test (1 min):

Line to Ground	1500VAC
Line to Line	1768 VDC

Insulation Resistance: $9 \times 10^{9} \Omega$ at 100 VDC
Ambient Temperature: $40^{\circ} \mathrm{C}$ Max at rated current Humidity Range: 0% to 95% R.H.
Termination:

- IEC Receptacle
- Wire Wrap/Solder

Maximum Leakage Current:

Each Line to Ground	PE9	PM9
115VAC, $60 \mathrm{~Hz}:$	0.25 mA	0.002 mA
250VAC, $50 \mathrm{~Hz}:$	0.40 mA	0.005 mA

Voltage Select Card: Installed in 120VAC position unless otherwise specified
Agency Approvals:

Nominal Current Rating	Part Number	Termination Line/Load	MINIMUM INSERTION LOSS - dB (50 ohm Circuit)						
			MODE	Frequency - MHz					
				. 15	. 50	1.0	5.0	10	30
$3 A$	PE9XXXX03	$\begin{aligned} & \text { IEC/Solder } \\ & \text { Tabs } \end{aligned}$	Common Differential	$\begin{array}{r} 18 \\ 8 \end{array}$	$\begin{aligned} & 24 \\ & 18 \end{aligned}$	$\begin{aligned} & 30 \\ & 24 \end{aligned}$	$\begin{aligned} & 45 \\ & 46 \end{aligned}$	$\begin{aligned} & 45 \\ & 50 \end{aligned}$	$\begin{aligned} & 50 \\ & 40 \end{aligned}$
	PM9XXXX03	IEC/Solder Tabs	Common Differential	$\begin{array}{r} 14 \\ 8 \end{array}$	$\begin{aligned} & 20 \\ & 18 \end{aligned}$	$\begin{aligned} & 22 \\ & 24 \end{aligned}$	$\begin{aligned} & 24 \\ & 32 \end{aligned}$	$\begin{aligned} & 22 \\ & 30 \end{aligned}$	$\begin{aligned} & 15 \\ & 30 \end{aligned}$
6 A	PE9XXXX06	IEC/Solder Tabs	Common Differential	$\begin{array}{r} 10 \\ 8 \end{array}$	$\begin{aligned} & 19 \\ & 18 \end{aligned}$	$\begin{aligned} & 24 \\ & 24 \end{aligned}$	$\begin{aligned} & 39 \\ & 39 \end{aligned}$	$\begin{aligned} & 44 \\ & 40 \end{aligned}$	$\begin{aligned} & 50 \\ & 40 \end{aligned}$
	PM9XXXX06	IEC/Solder Tabs	Common Differential	$\begin{array}{r} 10 \\ 8 \end{array}$	$\begin{aligned} & 15 \\ & 18 \end{aligned}$	$\begin{aligned} & 18 \\ & 24 \end{aligned}$	$\begin{aligned} & 18 \\ & 32 \end{aligned}$	$\begin{aligned} & 18 \\ & 28 \end{aligned}$	$\begin{aligned} & 15 \\ & 25 \end{aligned}$

PE9/PM9

(3 and 6Amp)
Dimensions

Refer to Standard Mounting Cutouts Below

How to Order

INSTALLATION INSTRUCTION
 IMPORTANT - CHANGING FUSEIVOLTAGE

PE7/PE8/PE9

To change fuse, remove power cord and open the front cover on the module. Remove fuse holder and replace fuse. Reinsert fuse holder and close cover. To change the operating voltage on the PE7/PM7 and PE9/PM9 Series, remove the power cord and open front cover. Rotate voltage select wheel until desired voltage appears in window of cover.

- Filter shipped without fuse.

Always use caution when selecting and changing fuses and voltage requirements. Curtis Industries is not responsible for malfunction due to improper installation/selection of fuse and/or voltage select.

Standard Mounting Cutouts

Screw-Mount Series

Features:

- RFI Filter Module Combines IEC Connector, Fusing, Optional Voltage Select and On/Off Switch into a Single, Space-Efficient Assembly
- Enhanced Low Frequency Response with No Resonant Peaks
- Fully Shielded for Radiative Noise Control
- Accepts Either U.S. or European Standard Fuse Sizes. Dual or Single Power Line Fusing
- Available to ULIIEC 60601 Standard and Meets UL 544 Specification for Medical and Dental Applications

Specifications:

Rated Voltage: 250VAC Maximum - $50 / 60 \mathrm{~Hz}$
Rated Current: 115VAC 250VAC
10A 10A
Current Overload: 6X for 8 seconds
Hi-Pot Test (1 min):

Line to Ground	1500VAC
Line to Line	2250 VDC

Insulation Resistance: $9 \times 10^{9} \Omega$ at 100 VDC
Ambient Temperature: $40^{\circ} \mathrm{C}$ Max at rated current
Humidity Range: 0% to 95% R.H.
Termination:

- QC - Quick Connect
- IEC Receptacle

Maximum Leakage Current:

Each Line to Ground	PE1	PM1	PE1-PO	PM1-PO
115VAC, 60Hz:	0.25 mA	0.002 mA	0.4 mA	0.015 mA
250VAC, $50 \mathrm{~Hz}:$	0.40 mA	0.005 mA	.75 mA	0.025 mA

Voltage Select Card: Installed in 120VAC position unless otherwise specified
Agency Approvals:

PE1/PM1 Series Simplified Schematic with Voltage Selector

Nominal Current Rating	Part Number	Termination Line/Load	MINIMUM INSERTION LOSS - dB (50 ohm Circuit)							
			MODE	Frequency - MHz						
				. 05	. 15	. 50	. 10	5.0	10	30
10A	PE1XXX10	IEC/QC	Common Differential	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 38 \\ & 35 \end{aligned}$	$\begin{aligned} & 45 \\ & 55 \end{aligned}$	50 60	$\begin{aligned} & 50 \\ & 55 \end{aligned}$
	PM1XXX10	IEC/QC	Common Differential	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 33 \\ & 33 \end{aligned}$	$\begin{aligned} & 25 \\ & 55 \end{aligned}$	20 60	$\begin{aligned} & 15 \\ & 55 \end{aligned}$
	PM1XXXP0	IEC/QC	Common Differential	$\begin{aligned} & 12 \\ & 10 \end{aligned}$	$\begin{aligned} & 23 \\ & 20 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 35 \\ & 33 \end{aligned}$	$\begin{aligned} & 25 \\ & 55 \end{aligned}$	$\begin{aligned} & 25 \\ & 60 \end{aligned}$	$\begin{aligned} & 30 \\ & 55 \end{aligned}$
	PE1XXXP0	IEC/QC	Common Differential	$\begin{aligned} & 13 \\ & 10 \end{aligned}$	$\begin{aligned} & 24 \\ & 20 \end{aligned}$	$\begin{aligned} & 33 \\ & 30 \end{aligned}$	$\begin{aligned} & 38 \\ & 35 \end{aligned}$	48 65	54 65	$\begin{aligned} & 54 \\ & 55 \end{aligned}$

NOTE: Other combinations of terminals may be specified on special order.

PE1/PM1

 (10Amp) DimensionsRefer to Standard Mounting Cutouts Below

WITH VOLTAGE SELECTOR

How to Order

PE1

INSTALLATION INSTRUCTION IMPORTANT - CHANGING FUSE/VOLTAGE

PE1/PM1

To change fuse, remove power cord. Remove voltage selector and replace fuse. Reinsert fuse holder. To change the operating voltage on the PE1/PM1 Series, remove the power cord and rotate fuse holder block until desired voltage aligns with the mark on the module housing.

- Filter shipped without fuse.

Always use caution when selecting and changing fuses and voltage requirements. Curtis Industries is not responsible for malfunction due to improper installation/selection of fuse and/or voltage select.

PE1/PM1 Series Simplified Schematic without Voltage Selector

Mounting Cutout

PE/PM1
Screw-Mount
Series

Standard Mounting Cutouts

F2200CA, F2300CA, F2500CA, F2700CA, F3200CA, F3500CA

F2600FP, F3300FP

F2600, F3300

F2100CA, F2400CA, F3100CA, F3400CA

THREE-PHASE FILTERS]

Specifications:

Rated Voltage: 480 VAC - $50 / 60 \mathrm{~Hz}$ 600 VAC - $50 / 60 \mathrm{~Hz}$
Rated Current: 480 VAC - 9A to 608A 600 VAC - 8A to 600A
Current Overload: 6X for 8 seconds

Hi-Pot Test (1 min):
Line to Ground
Line to Line

480VAC
2210 VDC
2780 VDC

600VAC
3150 VDC
3150 VDC

Insulation Resistance: $1000 \mathrm{M} \Omega \mathrm{min}$. at 250 VDC
Ambient Temperature: $0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.104^{\circ} \mathrm{F}\right)$
Humidity Range: 0\% to 95% R.H.
Termination:

- Wire
- Terminal Blocks
- Pressure Terminal Blocks

Weight: 3 to 65 lbs (1.36 to 29.50 kg)
Agency Approvals:
게 (

Designed to attenuate conducted interference in a small package providing excellent insertion loss, the F3480/F3600 series filters will provide effective EMC solutions up to 600A at 600VAC and power applications up to 360 kVA . With effective noise suppression in the critical $150 \mathrm{kHz}-30 \mathrm{MHz}$ range, this advanced 2-stage filter line will support both Delta and Wye connected loads. Curtis three phase filters are designed to provide EMC solutions in many applications such as:

- Motor
- Motor Control Centers
- Facility Filters
- Uninterruptible Power Supplies
- Power Conditioning Units
- Laser Welders
- Automated Test Equipment
- Robotics
- CNC Machinery
- Elevators
- Industrial Ovens

F3480 Simplified Schematic

F3600 Simplified Schematic

Ordering Information：

F3480 Series－ 480 VAC																
	Part Number	Maximum Leakage Each L／G $(250 \mathrm{~V}$,60 z ） 60 Hz ）	Minimum Insertion Loss（dB）							Dimensions（Inches）						
										A	B	C	D	E	F	G
608A	F3480T608	140 mA	Frequency（MHz）							18.75	5.25	5.93	41.25	16.00	8.00	$\begin{gathered} .28 \mathrm{x} \\ .40 \end{gathered}$
				． 15	． 5	70	5	10	30	18.75		5.93				
	F3480B608		CM	60	70	70	60	45	30 20	18.75	5.25	4.50	－－			
	F3480T322	90mA		Frequency（MHz）						10.50	5.25	4.63	23.50	8.00	4.00	$\begin{gathered} .28 \mathrm{x} \\ .40 \end{gathered}$
329 A	F3480T322			． 15	． 5	1	5	10	30							
	F3480B322		CM	60	70	70	65	55	45	10.50	5.25	4.50	－－			
	F3480B322		DM	30	40	40	40	35	20	10.50	5.25	4.50	－－			
	F3480T185	90 mA		Frequency（MHz）						11.25	4.12	4.25	20.25	10.00	5.00	$\begin{gathered} .20 x \\ .30 \end{gathered}$
185 A	F34801185			． 15	． 5	1	5	10	30							
	F3480B185		CM	60	70	70	65	55	45	11.25	4.12	3.50	－－			
	F3480T136	80mA		Frequency（MHz）						8.50	4.12	4.25	16.00	7.00	3.50	$\begin{gathered} .20 \mathrm{x} \\ .30 \end{gathered}$
$135 \wedge$	F3480T136			． 15	． 5	1	5	10	30							
	F3480B136		CM	60	65	70	60	50	40	8.50	4.12	3.50	－－			
	F3480B136		DM	25	35	45	30	30	20		4.12		－－			
	F3480T112	80mA		Frequency（MHz）						8.50	4.12	4.25	16.00	7.00	3.50	$\begin{gathered} .20 \mathrm{x} \\ .30 \end{gathered}$
112 A				． 15	． 5	1	5	10	30							
	F3480B112		CM	60	65	70	60	50	20	8.50	4.12	3.50	－－			
	F3480T080	30 mA		Frequency（MHz）						8.50	4.12	4.25	16.00	7.00	3.50	$\begin{gathered} .20 x \\ .30 \end{gathered}$
	F34801080			． 15	． 5	1	5	10	30							
	F3480B080		CM	60	70	70	65	55	45	8.50	4.12	3.50	－－			
	F3480B080		DM	15	25	45	40	40	30	8.50	4.12	3.50	－－			
60 A	F3480T060	30 mA		Frequency（MHz）						8.50	4.12	4.25	16.00	7.00	3.50	$\begin{gathered} .20 x \\ .30 \end{gathered}$
	F3480B060		CM	60	70	70	65	55	45	8.50		3.50	－－			
			DM	15	25	45	40	40	30		4.12					
	F3480A050	15 mA		Frequency（MHz）						8.00	5.12	2.25	－－	5.00	－－	$\begin{gathered} .19 x \\ .25 \end{gathered}$
50 A	F3480B050		CM	． 15	． 75	1	5	10	30							
	F3480T050		DM	10	40	50	50	50	40				10.10			
$32 \mathrm{~A}$	F3480A032	7 mA		Frequency（MHz）						8.00	5.12	2.25	－－	5.00	－－	$\begin{gathered} .19 x \\ .25 \end{gathered}$
	F3480B032		CM	． 15	． 70	1	5	10	30							
	F3480T032		DM	10	45	50	50	50	40				10.10			
$16 \mathrm{~A}$	F3480A016	3 mA		Frequency（MHz）						6.00	3.88	2.00	－－	4.00	－－	$\begin{gathered} .16 x \\ .20 \end{gathered}$
	F3480B016			． 15	． 70	1	5	10	30				－－			
	F3480T016		CM	50	70	80	75	65	50				10.10			
9A	F3480A009	3 mA		Frequency（MHz）						6.00	3.88	2.00	－－	4.00	－－	$\begin{gathered} .16 x \\ .20 \end{gathered}$
	F3480B009			． 15	． 5	1	5	10	30				－－			
	F3480T009		DM	30	85	80	50	50	50				10.10			

F3480B \& F3600B Dimensions

NOTE:
"N" Lead Not on F3480

60A \& Above

NOTE:
Only 3 Leads on
F3480 (Plus Ground)

50A \& Below

F3480T \& F3600T Dimensions

F3600 Series - 600 VAC																
Rated Current (Amps)	Part Number	Maximum Leakage Each L/G (250V, 60Hz)	Minimum Insertion Loss (dB)							Dimensions (Inches)						
										A	B	C	D	E	F	G
600A	F3600T600	120 mA	Frequency (MHz)							18.75	5.25	5.93	41.25	16.00	8.00	$\begin{gathered} .28 \mathrm{x} \\ .40 \end{gathered}$
	F36001600			. 15	5	1	5	10	30							
	F3600B600		CM	60	60	50	50	40	30	18.75	5.25	450	--			
	F3600B600		DM	20	35	35	30	25	20	18.75	5.25	4.50	--			
	F3600T300	60mA		Frequency (MHz)						10.50	5.25	5.93	26.50	8.00	4.00	$\begin{gathered} .28 \mathrm{x} \\ .40 \end{gathered}$
300 A				. 15	. 5	1	5	10	30							
	F3600B300		CM	60	60	50	50	40	30	10.50	5.25	4.50	--			
	F3600T180	60 mA		Frequency (MHz)						11.25	4.12	4.25	20.25	10.00	5.00	$\begin{gathered} .20 x \\ .30 \end{gathered}$
				. 15	5	1	5	10	30							
	F3600B180		CM	60	60	60	60	50	40	11.25	4.12	3.50	--			
	F3600B180		DM	20	30	35	45	40	30	11.25	4.12	3.50	--			
$80 A$	F3600T080	30 mA		Frequency (MHz)						8.50	4.12	4.25	16.00	7.00	3.50	$\begin{gathered} .20 \mathrm{x} \\ .30 \end{gathered}$
				. 15	. 5	1	5	10	30							
	F3600B080		CM	60	60	60	60	50	40	8.50	4.12	3.50	--			
$45 A$	F3600A045	10 mA		Frequency (MHz)						8.00	5.12	2.25	--	5.00	--	$\begin{gathered} .19 x \\ .25 \end{gathered}$
	F3600B045			. 15	. 5	1	5	10	30				--			
	F3600T045		CM	60	60	80	70	60	45				10.10			
$25 \mathrm{~A}$	F3600A025	8 mA		Frequency (MHz)						8.00	5.12	2.25	--	5.00	--	$\begin{gathered} .19 \mathrm{x} \\ .25 \end{gathered}$
	F3600B025			. 15	. 5	1	5	10	30				--			
	F3600T025		CM	60	60	80	70	60	45				10.10			
$16 A$	F3600A016	4 mA		Frequency (MHz)						6.00	3.88	2.00	--	4.00	--	$\begin{gathered} .16 x \\ .20 \end{gathered}$
	F3600B016		CM	. 15	. 5	1	5	10	30				--			
	F3600T016		DM	5	5	35	40	40	40				8.10			
$8 \mathrm{~A}$	F3600A008	4 mA		Frequency (MHz)						6.00	3.88	2.00	--	4.00	--	$\begin{gathered} .16 x \\ .20 \end{gathered}$
	F3600B008			. 15	. 5	1	5	10	30				--			
	F3600T008		CM	60	70	80	70	60	45				8.10			

DC FILTERS]

General Purpose

High Performance

The FD Series of DC filters are designed as a general purpose line of filters for DC applications. They are designed to comply with UL/EN 60950 and UL 1459, CISPER 22 and Telecordia (Bellcore) GR-1089 at 25Amps and above. These filters are available with and without circuit breakers for additional protection.

The FD Series is a compact size that can filter up to 300 MHz ideally suited for the telecom-datacom market. The FDO Series is available from 6Amps to 100Amps in the smallest, economical package. The FD02 is a high frequency filter up to $3 \mathrm{GHz}(3,000 \mathrm{MHz})$ in a compact package.

These filters are ideally used in communications and central office equipment.

- Power Supplies for Communications Equipment
- Network Routing Equipment
- Switching Equipment
- Base Stations
- Modems
- Services
- Ethernet Hubs

Specifications:

Rated Voltage: 80VDC Maximum

Rated Current: 6A

10A
20A
25A
50A
75A
100A
Current Overload: 6X for 8 seconds
Hi-Pot Rating (1 min):

$$
\begin{array}{lr}
\text { Line to Ground } & 1060 \mathrm{VDC} \\
\text { Line to Line } & \text { 100VDC }
\end{array}
$$

Insulation Resistance: $1000 \mathrm{M} \Omega$ at 80 VDC
Ambient Temperature: $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.131^{\circ} \mathrm{F}\right)$
Humidity Range: 0\% to 95% R.H.
Termination: See Chart at Right
Wire Leads: 18AWG 6A to 20A (FD0)

Agency Approvals:

6Amp to 20Amp

25Amp to 100Amp

FD00 \& FD02 SERIES

		Termination		
FILTER Part Number		0 0 0 0 0 0 0 0 0		N
FD00AA006	6	X		
FD00BB006	6		X	
FD00DD006	6			X
FD00AA010	10	X		
FD00BB010	10		X	
FD00DD010	10			X
FD00AA020	20	X		
FD00DD020	20			X
FD00BD025	25		X	X
FD00DD025	25			X
FD00BD050	50		X	X
FD00DD050	50			X
FD00BD075	75		X	X
FD00DD075	75			X
FD00BD100	100		X	X
FD00DD100	100			X
FD02BD025	25		X	X
FD02DD025	25			X
FD02DD050	50			X
FD02BD050	50		X	X
FD02DD075	75			X
FD02BD075	75		X	X
FD02DD100	100			X
FD02BD100	100		X	X

FD1, FD2, FD3 SERIES

		Disconnect Type			Termination			
FILTER Part Number								
FD10BB030	30				X			
FD10EE030	30						X	
FD10BB050	50				X			
FD10EE050	50						X	
FD10BB075	75				X			
FD10BB100	100				X			
FD20B					X			
FD20E_ _							X	
FD20R _ _		X						X
FD20D_ _			X					X
FD20H_ _	50,			X				X
FD20 _B_ -					X			
FD20 _C _ _						X		
FD20 _E_ -							X	
FD20 _T ${ }_{\text {- }}$								X
FD30B _ _					X			
FD30E_							X	
FD30R _ _		X						X
FD30D			X					X
FD30H				X				X
FD30 _B_ -	or 100				X			
FD30 _C _ -						X		
FD30 _E_ -							X	
FD30 _ ${ }_{\text {- }}$ - -								X

FD Series Fillers

How to Order

NOTE: Not all terminations are available in all models.

Part Number	TYPICAL INSERTION LOSS - dB (50 ohm Circuit)													
	MODE	Frequency - MHz												
		. 01	. 03	. 10	. 15	. 50	1.0	5.0	10	30	100	300	1000	3000
$\begin{aligned} & \text { FD00XX006 } \\ & \text { FD00XX010 } \\ & \text { FD00XX020 } \end{aligned}$	Common Differential	-	-	-	$\begin{aligned} & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 22 \\ & 45 \end{aligned}$	$\begin{aligned} & 30 \\ & 60 \end{aligned}$	$\begin{aligned} & 42 \\ & 60 \end{aligned}$	$\begin{aligned} & 47 \\ & 50 \end{aligned}$	$\begin{aligned} & 40 \\ & 50 \end{aligned}$	-	-	-	-
FD00XX025 FD00XX050 FD00XX075 FD00XX100	Common Differential	-	-	-	$\begin{aligned} & 22 \\ & 32 \end{aligned}$	$\begin{aligned} & 50 \\ & 38 \end{aligned}$	$\begin{aligned} & 60 \\ & 50 \end{aligned}$	$\begin{aligned} & 50 \\ & 55 \end{aligned}$	$\begin{aligned} & 45 \\ & 50 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$	-	$\begin{aligned} & - \\ & - \end{aligned}$	-	
$\begin{aligned} & \text { FD02XX025 } \\ & \text { FD02XX050 } \\ & \text { FD02XX100 } \end{aligned}$	Common Differential	$\begin{array}{r} 5 \\ 40 \end{array}$	$\begin{array}{r} 5 \\ 45 \end{array}$	$\begin{aligned} & 35 \\ & 45 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & 60 \\ & 48 \end{aligned}$	$\begin{aligned} & 60 \\ & 50 \end{aligned}$	$\begin{aligned} & 55 \\ & 45 \end{aligned}$	$\begin{aligned} & 55 \\ & 55 \end{aligned}$	$\begin{aligned} & 50 \\ & 48 \end{aligned}$	$\begin{aligned} & 40 \\ & 45 \end{aligned}$	$\begin{aligned} & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 20 \\ & 58 \end{aligned}$	$\begin{aligned} & 25 \\ & 40 \end{aligned}$
$\begin{aligned} & \text { FD10XX030 } \\ & \text { FD10XX050 } \\ & \text { FD10XX075 } \\ & \text { FD10XX100 } \end{aligned}$	Common Differential	$\begin{array}{r} 5 \\ 55 \end{array}$	$\begin{aligned} & 15 \\ & 60 \end{aligned}$	$\begin{aligned} & 48 \\ & 70 \end{aligned}$	$\begin{aligned} & 60 \\ & 70 \end{aligned}$	$\begin{aligned} & 65 \\ & 70 \end{aligned}$	$\begin{aligned} & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & 60 \\ & 70 \end{aligned}$	$\begin{aligned} & 60 \\ & 60 \end{aligned}$	$\begin{aligned} & 55 \\ & 50 \end{aligned}$	$\begin{aligned} & 25 \\ & 35 \end{aligned}$	$\begin{aligned} & 25 \\ & 15 \end{aligned}$	-	-
FD20XX030 FD20XX050 FD20XX080	Common Differential	$\begin{array}{r} 5 \\ 55 \end{array}$	$\begin{aligned} & 15 \\ & 65 \end{aligned}$	$\begin{aligned} & 48 \\ & 70 \end{aligned}$	$\begin{aligned} & 60 \\ & 65 \end{aligned}$	$\begin{aligned} & 70 \\ & 60 \end{aligned}$	$\begin{aligned} & 70 \\ & 65 \end{aligned}$	$\begin{aligned} & 70 \\ & 55 \end{aligned}$	$\begin{aligned} & 60 \\ & 50 \end{aligned}$	$\begin{aligned} & 55 \\ & 45 \end{aligned}$	-	-	-	-
$\begin{aligned} & \text { FD30XX030 } \\ & \text { FD30XX050 } \\ & \text { FD30XX075 } \\ & \text { FD30XX100 } \end{aligned}$	Common Differential	$\begin{aligned} & 12 \\ & 50 \end{aligned}$	20	44 70	$\begin{aligned} & 60 \\ & 70 \end{aligned}$	60 70	$\begin{aligned} & 60 \\ & 70 \end{aligned}$	$\begin{aligned} & 60 \\ & 55 \end{aligned}$	60 70	55 60	-	-	-	-

FD00AA (6, 10 and 20Amp) Dimensions

Amps	A	B	C	D	E	F
6A	3.312	2.000	1.125	2.940	2.500	.550
	$(84,1)$	$(50,8)$	$(28,5)$	$(74,7)$	$(63,5)$	$(14,0)$
10 A	3.312	2.000	1.500	2.940	2.500	.550
	$(84,1)$	$(50,8)$	$(38,2)$	$(74,7)$	$(63,5)$	$(14,0)$
20A	See FD00DD below for Case Dimensions					

(6 and 10Amp) Dimensions

FD00DD (20Amp) Dimensions

FDOO \& FDO2 Fillers

FD00DD (25, 50, 75 and 100Amp) Dimensions

FD02DD (25, 50 and 100Amp) Dimensions

FD10EE050

(50Amp) Dimensions

Amps	A	B	C	D	E	F
50 A	4.25	3.50	1.37	3.750	3.000	2.33
	$(107,95)$	$(88,9)$	$(34,79)$	$(95,25)$	(76.2)	$(59,18)$
100 A	4.25	3.50	1.37	3.750	3.000	2.33
	$(107,95)$	$(88,9)$	$(34,79)$	$(95,25)$	(76.2)	$(59,18)$

FD10BB100

 (100Amp) Dimensions

FD20HC080

FD30RB100

(30, 50, 75 and 100Amp) Dimensions

TECHNICAL CONSIDERATIONS

Understanding Terminology Technical Considerations

 Conducted Emissions TestingCustom Filter Capabilities

Understanding Terminology

Curtis Industries, a leading manufacturer of superiorquality electronic and electrical components and assemblies for more than 70 years, offers a complete line of RFI power line filters designed to help your equipment meet FCC and CE requirements on conducted EMI.

Radio frequency interference (RFI) is unwanted noise generated by a wide variety of electronic and electrical devices. Governments of most industrial

countries, including the United States, Canada and the European Union have enacted guidelines on emitted RFI.

Curtis designs quality into every product and then tests for quality by specification compliance, including hipot, component value, grounding and leakage, on a 100% production basis. We employ a rigorous component qualification program with thorough incoming and on-line inspection procedures. Our computercontrolled 100% safety and performance testing to demanding customer requirements is your assurance of the highest quality RFI filters available today.

This section provides you with some basic knowledge on terminology and technical information helpful in solving your noise emission in power circuits. For additional information visit our website at www.curtisind.com.

Definitions

Attenuation: The decrease in intensity or absorption of electromagnetic energy. Expressed in dB.
Conducted Interference: Electromagnetic signals entering a device through direct connection.
Emissions: The level of electromagnetic disturbances equipment causes to its environment.

Filter: Remove electrical noise or interference from the power line by cleaning up the sine wave.
Immunity: The level to which equipment is immune to electromagnetic disturbances in its environment
Impedance: Opposition to the flow of electrical current when a given voltage is applied.
Inductor: Passive component that produces a voltage proportional to the change in current. Measured in Henrys.
Insertion Loss: The electromagnetic signal loss resulting from the insertion of a filter in a transmission line. Expressed in dB.

What is RFI?

Radio frequency interference (RFI) is the radiation or conduction of radio frequency energy (or electronic noise) produced by electrical and electronic devices at levels that interfere with the operation of adjacent equipment. Frequency ranges of most concern are 10 kHz to 30 MHz (conducted) and 30 MHz to 1 GHz (radiated).

What causes RFI?

The most common sources include components such as switching power supplies, relays, motors and triacs. These devices are found in a wide variety of equipment used in industrial, medical, white goods, and building HVAC equipment.

What are the types of RFI?

An electrical or electronic device emits RFI in two ways:

- Radiated RFI is emitted directly into the environment from the equipment itself.
- Conducted RFI is released from components and equipment through the power line cord into the AC power line network. This conducted RFI can affect the performance of other devices on the same network.

How can RFI be controlled?

- Radiated RFI is usually controlled by providing proper shielding in the enclosure of the equipment.
- Conducted RFI can be attenuated to satisfactory levels by including a power line filter in the system.
The filter suppresses conducted noise leaving the unit, reducing RFI to acceptable levels. It also helps to lower the susceptibility of the equipment to incoming power line noise that can affect its performance.

What is the government's role in regulating RFI?

Governments and safety agencies of major industrial countries, including the United States, Canada, and the European Union have established noise emission regulations that are focused on digital and other electronic equipment. The most important of these guidelines are FCC CFR 47 (Parts 15 and 18) in the United States and CISPR 11, 14 and 22 in the European Union.

FCC CFR 47 (Part 15) regulates the RF
interference of electronic computing devices, defined as any electronic device or system that generates and uses timing signals or pulses at a rate in excess of 10,000 pulses (cycles) per second and uses digital techniques. This definition includes telephone equipment that utilizes digital techniques and any device or system that generates and uses radio frequency energy for the purpose of performing dataprocessing functions such as electronic computations, operations, transformations, recording, filing, sorting, storage, retrieval or transfer.

FCC regulations are broken down into Class A computing devices marketed for use in commercial, industrial or business environments, and Class B devices intended for use in a residential environment.

The European Union has harmonized the various national regulations and has established the international standards CISPR 11, 14 and 22. CISPR 11 covers industrial, scientific and medical equipment. CISPR 14 covers electrical and thermal appliances and tools. CISPR 22 covers information technology equipment.

In addition to governmental regulations, safety agencies worldwide have established guidelines for all electrical/electronic components. These include UL, CSA and TUV. They are designed to protect against shock and fire hazard.

How do RFI power line filters work?

Consisting of a multiple-port network of passive components arranged as a dual low-pass filter, the RFI filter attenuates radio frequency energy to acceptable levels, while permitting the power frequency current to pass through with little or no attenuation. Their function, essentially, is to trap noise and to prevent it from entering or leaving your equipment.

RFI is conducted through a power line in two modes. Asymmetric or common mode noise occurs between the line and ground. Symmetric or differential mode is measured from line to line. See the selection guide on page 2 under "Performance."

Meeting Emissions Standards

The emissions limits that a piece of equipment must meet will depend on the intended market for that piece of equipment. If there is more than one market, more than one emission standard may have to be met. This can have a substantial effect on the circuit, size, and cost of a filter. Standards like the CISPR's or the FCC Rules Part 15 have frequency limits of 150 kHz to 30 MHz .

FCC 15 AND CISPR CONDUCTED EMISSION LIMITS DIGITAL EQUIPMENT

EMI measurements are generally made using Spectrum Analyzers with Average or Quasi-Peak detectors in accordance with methods described in CISPR 16. Quasi-Peak differs from Average measurements by weight-averaging the peaks into the total.

Equipment meeting these specifications can utilize a filter with a fairly high cutoff frequency. Other standards like FCC 18 with a low frequency limit of 10 kHz will result in the equipment using lower cutoff filters. As might be expected, the lower the cutoff frequency, the larger the physical size and the higher the cost of the filter.

Conducted RFI Susceptibility

The problem of susceptibility can be extremely difficult to deal with because the amplitude and frequency of the offending RF noise are seldom known and are often intermittent. If the malfunction can be duplicated by isolating the equipment from the power line with LISN's
(Line Impedance Stabilization Network) and using signal generators to inject RF of varying amplitude and frequency, some insight can be gained as to the nature of the problem. However, the criteria for acceptable performance will have to be decided upon so that a filter yielding this level of performance can be obtained from the test procedure. Unfortunately, this still does not eliminate the need for final testing in the actual operating environment which, in many cases, occurs in the field.

Selection of a suitable filter can best be based on the type of power supply or input impedance of the equipment and on the mode of the offending RFI noise.

Noise Modes

Power line filters attenuate noise in two different modes.
Common Mode: Also known as line-to-ground noise measured between the power line and ground potential.
Differential Mode: Also known as line-to-line noise measured between the lines of power.
Power line filters are designed to attenuate either one or both modes of noise. The need for one design over another will depend on the magnitude of each noise type present. The attenuation is measured in dB (decibels) at various frequencies of signal.

Circuit Configuration

Power line RFI filters are generally built with two or three-pole filter networks. As the number of poles and the corresponding component count increases, the cost will increase also. Trying to typify an equipment's impedance as either high or low for purposes of filter selection may not be successful. If it is a complex impedance, it could probably be low at some frequencies, high at others, and some intermediate value at still other frequencies.

Although we have been generally successful in recommending a two-pole network for linear power supplies and three-pole networks for switching power supplies and synchronous motors, you should not limit your testing to just one circuit type if either additional circuit performance or lower cost is desired. Consider the following: If the equipment looked strictly capacitive, the performance of a two-pole network would be reduced to that of a single-pole filter.

Figure 1a.
A signal source (E) with its internal impedance driving a capacitive load.

Figure 1b.
The same circuit as in Figure 1a, with the addition of a 2-pole low pass filter. Notice filter capacitor C1 is in parallel with the capacitive load.

Figure 1c.
Combining capacitor C1 in Figure 1b, with the load results in this circuit configuration.

The filter has been reduced to one inductive element, L1.
Obviously a three-pole filter would be preferred for maximum performance. Likewise, if the equipment looked strictly inductive, the performance of a threepole network would be reduced to that of a two-pole network.

Figure 2 a .
A signal source with its internal impedance driving an inductive load.

The same circuit as in Figure 2a, with the addition of a 3-pole low pass filter. Notice filter inductance L2 is in series with the inductive load.

Figure 2c.
Combining inductor L2 in Figure 2b, with the load results in this circuit configuration, the filter has been reduced to two effective elements, L1 \& C1.

Undoubtedly the two-pole filter would be a more economical choice with probably equal performance in this application. Since the equipment is not likely to be equivalent to either one of these simple cases, the only way to find the best cost-effective solution is to test the filters in your equipment and base your judgement on these test results.

Leakage Current

The maximum leakage current that a device is allowed depends on the requirements of the particular safety agency involved. Here, selection of the filter is quite easy since either the filter is designed to meet a given level or it is not. Although there is no compromise when it comes to safety specifications, it should be understood that for a given level of performance, as the leakage current is reduced, the physical size of the package will increase. Curtis medical filters have a very low leakage current.

Insertion Loss

DO NOT use the insertion loss specifications to make your final decision. Power line filters are two-terminal pair passive networks whose attenuation characteristics can be defined by a complex transfer function. How that transfer function will react in a particular system and at specific frequencies will depend on the complex impedances connected to each side of the filter. The equipment impedance and the impedance of the power line, even if a 50 ohm LISN (Line Impedance Stabilization Network) is being used during emission testing, will not generally be equal to the resistive 50 ohms used during insertion loss measurements. Therefore, the performance of the filter in the equipment cannot be related to the published insertion loss data.

Minimum Insertion Loss

Do not be alarmed that the insertion loss figures we have published may be of lower value than those of our competition. You will only find guaranteed minimum insertion loss figures in this catalog, without any mention of typical values.

Insertion loss test data measured in a 50 ohm system is a valuable incoming inspection tool to assure you that consistent product is being shipped. The only figures of any importance are those that specify the criteria for acceptance or rejection of that product, and those figures are the minimum values.

Curtis offers full RFI/EMI conducted emissions testing services for manufacturers who must produce equipment in accordance with FCC and CE standards.

Curtis testing facilities consist of a laboratory equipped to test and evaluate EMI characteristics of equipment that must comply with FCC Part 15 and/or CISPR standards. With these facilities, Curtis can provide manufacturers with greater assistance in the selection of RFI/EMI filters to help them meet the necessary emission levels.

Isolated Environment Enhances Test Capabilities

- Totally isolated environment for both equipment under test and test instrumentation provided by separate chambers.
- RF screen room shielded against magnetic, electric and plane wave field per MIL-STD-285.
- Specially constructed line impedance stabilization networks (LISN) for FC Part 15 and CISPR testing.
- Sensitive, reliable automatic measurement and recording of conducted emissions data from 10 KHz to 1 GHz .
- Computer-controlled Agilent E7402A Spectrum Analyzer with associated amplifiers and attenuators.
- Agilent E7402A graphics capabilities allow quick generation of hard copies of emissions test results.

WITH FILTER

Fast Pre-Compliance Test Results

Computer-generated graphics and test reports provide the customer with fast turnaround on all testing.

On-site RFI filter design/applications engineers are available to assist in evaluating test results and to determine cost-effective solutions to conducted emissions problems before going to agencies.

Please contact your local Curtis representative or the factory sales staff to coordinate pre-compliance testing of your equipment at Curtis Industries.

The Curtis screen room provides complete RFI isolation for equipment under test and the test instrumentation.

Computer-controlled test equipment assures fast turnaround on RFI emissions testing.

Curtis can provide environmental testing to demonstrate performance and survival in harsh conditions.

Custom Filter Capabilities we Build Confidence!

Curtis has the capability to modify any of our standard filters or to work with you from design to delivery on a completely custom filter to meet your exact mechanical and electrical requirements. The Curtis Filter Engineering Team, drawing from our extensive knowledge and experience, is fully equipped and qualified to consult with you on your RFI and EMI emission control problems. Curtis has the ability to test your equipment in our technologically advanced screen room to help you select the proper filter for your application.

Information We Need From You

Specifications:

* Rated Voltage: \qquad * Line Frequency: \qquad
* Rated Current: \qquad * Max. Temperature: \qquad
Current Overload: \qquad Humidity Range: \qquad
Max. Leakage Current (Each Line to Ground) \qquad
Dimensions: \qquad
Terminal Type: Input (Line): \qquad
Output (Load): \qquad
Mounting Torque (Panel-Mount Models Only): \qquad
Test Specifications:
Hipot Test: Line to Ground: \qquad VAC for One min.

Line to Line: \qquad VDC for One min.
Insulation Resistance: \qquad

* Minimum Insertion Loss (50 C Circuit):

	Frequency (MHz)							
	.01	.15	.5	1	5	10	30	
CM								
DM								

Organization Approvals: UL \qquad CSA \qquad TUV \qquad Other \qquad
Company Name: \qquad Contact: \qquad
E-mail Address: \qquad Phone Number: \qquad

* Required

Curtis Contact Information

E-mail: sales@curtisind.com
Phone Number: 1-800-657-0853
Fax: 414-649-4279
Address: P.O. Box 343925, Milwaukee, WI 53234-3925

RFI Filters

DIN Rail

PCB Mount Blocks

Filtered Power Entry Curits

Family of

 ProductsLiquid Level Controllers

Custom Filters

Terminal Blocks

Custom Terminal Blocks

[^0]: NOTE: Other combinations of terminals may be specified on special order.

